

INFORME TECNICO FINAL

PROYECTO "Caracterización y desarrollo de Germoplasma para mejorar la Calidad Industrial del Trigo en el Cono Sur"

Convenio IICA - BID ATN/SF 6486 RG

Líder del Proyecto: Ing. Agr. M. Sc. Rubén P. Verges

Junio 2003

Caracterización y desarrollo de germoplasma para mejorar la calidad industrial del trigo en el Cono Sur

Informe Técnico Final

FONDO REGIONAL DE TECNOLOGIA AGROPECUARIA (FONTAGRO)

INTA (Argentina)
INIA (Chile)
DIA (Paraguay)
CIMMYT (México)
INIA (Uruguay)

Junio de 2003

TABLA DE CONTENIDO

RESUMEN EJECUTIVO	1
METODOLOGÍA UTILIZADA	4
1. Determinación de factores moleculares asociados con las características de calidad de gluten, de utilidad en el mejoramiento de la calidad industrial del trig	
2. Determinación de factores reológicos y de procesamiento relacionados con calidad industrial y definición de parámetros relevantes para la eficiente seleccide germoplasma	ĺa
3 - Relación entre factores moleculares y los parámetros de calidad de trigos	
cultivados en ambientes diversos de países del Cono Sur y México	18
RESULTADOS OBTENIDOS	20
1. Determinación de factores moleculares asociados con las características de	
calidad de gluten y de utilidad en el mejoramiento de la calidad industrial del tr 2. Determinación de factores reológicos y de procesamiento relacionados con calidad industrial y definición de parámetros relevantes para la eficiente selecc	la
de germoplasma	35
3. Relación entre factores moleculares y los parámetros de calidad de trigos	
cultivados en ambientes diversos de países del Cono Sur y México	84
DISCUSIÓN Y CONCLUSIONES	91
PUBLICACIONES, REPORTES Y DOCUMENTOS	95
1. Lista de bibliografía citada	95
2. Lista de Informes Adjuntos (ver Anexos)	99
ANEXOS	101

RESUMEN EJECUTIVO

Objetivos y metas

Objetivo general

Contribuir al desarrollo de germoplasma y de variedades de trigo (*Triticum aestivum L*.) de superior calidad industrial, para incrementar la competitividad del cultivo en el Cono Sur y mejorar la disponibilidad alimenticia en la Región.

Objetivos específicos

- 1) Determinar factores moleculares asociados con las características de calidad del gluten y que sean útiles en el mejoramiento de la calidad industrial del trigo.
- 2) Determinar factores reológicos y de procesamiento relacionados con la calidad industrial y definir parámetros relevantes para la eficiente selección de germoplasma.
- 3) Determinar la relación existente entre parámetros moleculares, químicos y reológicos para desarrollar escalas de valores y ecuaciones útiles para la selección.
- 4) Identificar y desarrollar germoplasma con genotipos que combinen deseable y estable calidad industrial con buen comportamiento agronómico y resistencia a enfermedades.

Metas

- 1) Relevar las necesidades de calidad de las industrias de cada uno de los países participantes.
- 2) Caracterizar alrededor de 150 genotipos de trigo de origen regional, en relación a las características mencionadas anteriormente.
- 3) Definir y uniformizar metodologías útiles para una eficiente selección de germoplasma y para describir las características de calidad de líneas avanzadas de programas de mejoramiento genético.
- 4) Iniciar un programa de desarrollo de germoplasma para combinar en nuevas variedades las características de calidad deseables.

Metodologías y material experimental

Mediante electroforesis, se determinaron las composiciones de gluteninas y gliadinas y por medio de marcadores moleculares, tipo microsatélites, se determinaron las composiciones de gluteninas de bajo peso molecular y de secalinas. También mediante marcadores moleculares se determinó la dureza de grano.

Se usó el método de sedimentación para una rápida determinación de la fuerza general del gluten y se determinaron las características viscoelásticas de la masa por métodos reológicos (Alveografía, Mixografía y Farinografía).

El contenido de proteína en grano y en harina fue determinado por el método clásico de Kjeldhal y por medio de determinaciones rápidas usando tecnología infrarroja.

La germinación en espiga se estimó directamente por simulación de lluvia en condiciones controladas y, también, usando el método de Indice de Caída ("Falling Number").

Por medio de análisis estadísticos, se determinó la estabilidad de la calidad de los diferentes genotipos a través de los diferentes ambientes de los países participantes.

El **material experimental** original consistió en una colección de 140 genotipos de trigo, elegidos en base a posibles usos industriales diferentes y que pudieran representar la variabilidad genética con que cuenta cada país participante en el proyecto.

Resultados obtenidos

Una muestra representativa de genotipos de la región fue caracterizada molecular y reológicamente. De esta forma, se pudo establecer cuales son los alelos de los loci que más influyen en la calidad industrial. Los resultados reológicos de ambientes contrastantes fueron comparados con los resultados de estudios moleculares, y mostraron la existencia de genotipos de alta calidad panadera en todos los países participantes.

Logros de objetivos

En síntesis, los objetivos 1 y 2 fueron alcanzados plenamente, el objetivo 3 fue logrado en su mayoría, mientras que el objetivo 4 no llegó a ser abordado.

Ejecución de actividades

En general, se alcanzó un buen grado en la ejecución de las actividades, pese a que las mismas sufrieron reajustes con respecto a la formulación original, por motivos que se mencionan en el punto 1.8.

Nuevos conocimientos

Respecto a nuevos conocimientos, el principal producto del proyecto es dejar caracterizados, en diversos aspectos de calidad industrial, una importante cantidad de genotipos que representan el acervo genético de trigo en los países del Cono Sur.

Impactos logrados

Se espera que el impacto inmediato de este proyecto sea, principalmente, sobre el conocimiento de los equipos de investigadores que desarrollan actividades en mejoramiento genético de trigo, principalmente en el Cono Sur.

Este incremento de conocimiento puede aumentar la capacidad para abordar el desarrollo de nuevas variedades de trigo, que logren alcanzar mejores valores de calidad para los consumidores finales de la cadena agroindustrial del trigo, cumpliendo, a su vez, satisfactoriamente con las demandas de los productores y de la industrial, tanto molinera como de elaboración final.

Restricciones y limitantes para el desarrollo del proyecto

Se considera que el proyecto no tuvo restricciones demasiado limitantes para el logro de un normal desarrollo del mismo. Sin embargo, es conveniente mencionar algunas dificultades que pueden haber entorpecido el mejor logro de los objetivos.

Las mismas son las siguientes: **a)** el monto original del proyecto (U\$S 499.000) fue reajustado por el FONTAGRO, quedando finalmente en un 70% del original (U\$S 350.000), lo cual determinó una adecuación de actividades a este monto; **b)** Brasil participó en las etapas de formulación y presentación del proyecto, pero no en la de ejecución, lo cual significó una muy importante pérdida por lo que este país representa para la región, en términos de sus recursos científicos, laboratorios, ambientes para prueba de genotipos, etc.; y **c)** los primeros seis meses del proyecto (octubre 1999-marzo 2000) fueron prácticamente perdidos desde el punto de vista de ejecución de actividades, debido a que el trigo es una especie que en el Cono Sur se siembra entre los meses de abril y agosto. Si bien luego se lograron extensiones que compensaron en tiempo esta pérdida, por lo dicho anteriormente, en el primer año de ejecución efectiva (2000) sólo se pudo cumplir con los cometidos de reunir el material experimental, multiplicarlo y, luego, distribuirlo a los participantes a principios del año 2001, para siembra en este año en los diferentes países.

Como resultado de esta situación y con la excepción de Uruguay, los primeros resultados de laboratorio recién se obtuvieron a fines del 2001 y principios del 2002. A esto debe agregarse una importante incidencia y severidad de fusariosis de la espiga (*Fusarium spp*), registrada en el año 2001 en gran parte de la región, lo que inutilizó varios sets de muestras. Esta sucesión de problemas hizo que a la postre no se pudiera completar el estudio de todos los genotipos durante tres años, como se había pensando en principio, ni tampoco comenzar con la primera fase de mejoramiento genético por calidad, en cumplimiento del objetivo específico 4.

METODOLOGÍA UTILIZADA

- 1. Determinación de factores moleculares asociados con las características de calidad de gluten, de utilidad en el mejoramiento de la calidad industrial del trigo
- 1.1. Caracterización electroforética de la composición de subunidades de gluteninas de alto peso molecular (HMW-Gs)

La determinación de HMW-Gs, así como de otros factores moleculares, se hizo sobre el set completo de muestras (140 genotipos) detallado en el **Cuadro 1**, incluyendo los genotipos de Brasil.

Estos análisis fueron efectuados en Chile, Argentina y México, empleando una metodología diferente en cada uno de estos países.

En los análisis efectuados en México, la determinación de gliadinas y gluteninas fue realizada a través de electroforesis en geles de policacrilamida en presencia de dodecil sulfato de sodio (SDS-PAGE). Para estos análisis, se utilizó mezcla de harina integral de semillas de al menos 30 individuos por entrada, con la finalidad de detectar la homogeneidad en la composición genotípica en las variedades bajo estudio. Las gliadinas y secalinas fueron extraídas con solución acuosa de propanol al 50%. El residuo insoluble en alcohol fue reducido con ditiotreitol y alquilado con 4-vinil piridina, para el análisis de las gluteninas. Se utilizó el protocolo de extracción de Singh et al. (1991), aunque con ligeras variantes. Se emplearon geles a una concentración de acrilamida del 13%, los cuales fueron sometidos a una corriente de 12.5mA por gel, durante 18 horas.

En Castelar, para el análisis de gluteninas, al pellet remanente de la extracción de gliadinas con DMF, se le adicionó 1 ml 0.125M de tampón Tris-HCl (pH 6.8) que contenía 1% SDS y se lo sometió a agitación durante 30 minutos. Se centrifugó y descartó el sobrenadante. El pellet fue usado para la extracción de gluteninas empleando 0.125M de tampón Tris-HCl (pH 6.8) conteniendo (1.5% p/v) ditiotreitol y 1 % (p/v) de dodecil sulfato de sodio (SDS) en una proporción 5 μl :1 mg (volumen del solvente con relación a peso de la semilla), durante 30 minutos a 60°C. Se utilizaron geles de acrilamida a concentraciones del 8 y del 10%, y en algunos casos, para la confirmación de la presencia de la subunidad 2* en presencia de las subunidades 2+12, se utilizaron geles al 8% con adición de urea. Los geles fueron sometidos por aproximadamente 3 horas a una corriente constante de 30 mA por gel, hasta que el frente del colorante (gamma pyronina) saliera del gel.

En el caso de Chile, para extraer las proteínas componentes del gluten, se utilizó una modificación del protocolo descrito por Hewstone y Hinrichsen (1994). Primeramente, este procedimiento consistió en moler los granos de trigo separando el endosperma del salvado, obteniendo así la harina utilizada en la extracción. En segundo lugar, la harina fue suspendida en una solución buffer de extracción que contiene Tris base, Ditriotreitol (DTT), Urea y Dodecil Sulfato de Sodio (SDS). En tercer lugar, se mezcló la suspensión y se separó en dos fases producto de la centrifugación: una inferior que contiene lípidos, carbohidratos y el resto de las proteínas del grano, albúminas y globulinas; y otra en que las gluteninas y gliadinas son retenidas en la fase acuosa (superior). La electroforesis se realizó una vez que se determinó la concentración aproximada de proteína en cada una de las muestras compuestas por los distintos cultivares. Las proteínas extraídas se

separaron por electroforesis vertical en geles de poliacrilamida. La visualización de las bandas de gluteninas se realizó tiñendo los geles en una solución con Azul de Comassie R250 por 30 minutos con agitación suave y posteriormente desteñidos en una solución de ácido acético también por 30 minutos. Luego, los geles fueron fotografiados sobre un transluminador para su análisis por un sistema fotográfico Kodak Digital Science EDAS 120, siendo finalmente conservados en una solución de glicerol al 10% .

Cuadro 1 - Genotipos a los que se les determinó factores moleculares

Entrada	IDENTIFICACION			
	LAP 4094			
-	VICTORIA INTA			
	KLEIN IMPACTO			
	PROINTA CALIDAD			
	MARCOS JUÁREZ INTA			
	J97031 = KLT"S"/4/COW"S"/3/NAD//BB/INIA/5/RTNI			
	BUCK NAPOSTÁ			
	PROINTA GRANAR			
	PROINTA REAL			
	PROINTA ALAZÁN			
	PROINTA GUAZÚ			
	EZORZAL/ND376*3/GIZA74003/3/BPUC			
	BUCK PONCHO			
	BUCK CHARRÚA			
	COOPERACIÓN LIQUEN			
	LA PAZ INTA			
	PROINTA PINCÉN			
	PROINTA HUEN PAN			
	PROINTA COLIBRÍ			
	KLEIN 32			
	PROINTA CINCO CERROS			
22 FONTEZUELA INTA				
23 PROINTA IMPERIAL				
24	24 BUCK CAUDILLO			
25	BUCK ARRIERO			
26	TEZANOS PINTO PRECOZ			
27	PROINTA HURÓN			
28	PROINTA CAUQUÉN			
29	KLEIN COBRE			
30	DON ERNESTO INTA			
	BUCK PANADERO			
	PROINTA AMANECER			
	KLEIN ESTRELLA			
	KLEIN ORIÓN			
	BUCK PRONTO			
	KLEIN TOLEDO			
	BUCK YATASTO			
	LAP 3363			
	LAP 3495			
	LAP 3679			
	ITAPÚA 40			
	IAN-8			
	CORDILLERA-3			
	IAN-9			
	E-91081			
46	E-91079			

Entrada	IDENTIFICACION
	E-91075
	E-94085
	C-91181
	E-92225
	C-93087
	C-93472
	E-96052
	E-92227
	ESTANZUELA TARARIRAS
	ESTANZUELA DORADO
	ESTANZUELA HORNERO
	ESTANZUELA CARDENAL
	ESTANZUELA CALANDRIA
	ESTANZUELA FEDERAL
	ESTANZUELA PELÓN 90
	ESTANZUELA FELON 90 ESTANZUELA HALCÓN
	INIA MIRLO
	INIA CHIMANGO
	LE 2210-INIA TIJERETA
	INIA BOYERO
	LE 2193-INIA CABURÉ LE 2233-INIA BÚHO
	LE 2245-INIA GORRIÓN
	LE 2249-INIA GORRION LE 2249-INIA CHURRINCHE
	LE 2240
	LE 2232
	LE 2232 LE 2278
	LE 2281
	LE 2282
	LE 2283
	HUAÑIL INIA 1786
	HUAYUN INIA 2285
	MILLALEU INIA 48
	CIKO INIA 9002/97
	DOMO INIA 2841
	KALIPAN INIA QUI 889-94
	TAMOI INIA P106/99
	NAOFEN INIA 49
	COYAN INIA 2064
	MAQUI INIA 64
	OPALA
	P030/97
	042/97
	P102/96
	P150/96
	PIA P183/98
	P139/98
	P110/98
	1191
	P065/96
	P007/98
	TOROPI P105/99
102	
	P034/97
	P035/97
	P041/97
103	וודט וו

Entrada	IDENTIFICACION
106	P052/98
107	
	1763
	2916
110	2917
	P108/98
112	1774
113	P088/98
114	2321
115	P193/98
	FRONTANA
117	IAC 5-MARINGA
	CEP 24
119	CEP 27
	FUNDACEP 29
	EMB 16
	EMB 22
	EMB 27
	EMB 40
	EMB 42
	TRIGO BR 17
	TRIGO BR 18
	TRIGO BR 26
	TRIGO BR 33
	TRIGO BR 40
	BRS 49
	BRS 119
	IAPAR 17
	IAPAR 28
	IAPAR 29
	IAPAR 53
	IAPAR 78
	IPR 84
	OC 16
	OC 21
	OC 22
	OR 1
143	TRIGO BR 23

Corresponde aclarar que las entradas 48, 49 y 50 fueron eliminadas por estar repetidas, por lo tanto, la colección totalizó 140 genotipos diferentes.

1.2. Caracterización electroforética de los bloques de gliadinas presentes en las variedades de trigo, presencia de translocaciones con centeno.

Extracción de proteína

Se utilizaron semillas individuales para los análisis. Cada semilla se cortó por la mitad y la parte distal se trituró en un mortero. El embrión fue guardado para su posterior siembra. A la harina obtenida se le adicionó una solución 1.5M de dimetil formamida. La relación entre volumen de solvente y peso de la semilla fue de 5:1 (μ l: mg). Se centrifugó la solución durante 10 minutos a 14000 xg y se almacenó el sobrenadante en un vial a -20°C para el posterior análisis de gliadinas.

Métodos electroforéticos

Las gliadinas fueron separadas por A-PAGE (con tampón aluminio lactato, pH 3.1) de acuerdo a la metodología de Khan et al. (1985) en geles de 140 x 160 x 1.5 mm. La electroforesis se llevó a cabo a intensidad constante de 25 mA/gel, y el tampón de los electrodos fue mantenido a una temperatura constante de 20°C.

Nomenclatura

Se analizaron los bloques de gliadinas correspondientes a Gli-B1 y Gli-D1, y se determinó la presencia o ausencia de la translocación con centeno (1BL/1RS y 1AL/1RS). En el caso de los patrones gliadínicos para Gli-B1, se utilizó la nomenclatura de Metakovsky (1991). En cambio, para el caso de Gli-D1 se prefirió (a fines prácticos) discriminar a las variedades de acuerdo con Masci et al. (1991). Estos autores encontraron que en todos los trigos harineros estudiados, solamente estaban presentes dos tipos de patrones electroforéticos para las ω- gliadinas y las LMW-Gs codificadas por el cromosoma 1D. Estos dos patrones son homólogos a los encontrados en los cultivares de trigo harinero Chinese Spring (CS) y Cheyenne (CNN), y en consecuencia se los denominó tipos CS y CNN. Estas dos variantes contribuyen de manera contrastante a la calidad, debido a la presencia en el tipo CS, de D-LMWGs que actúan como terminadores de cadena de los polímeros de glutenina, confiriendo en consecuencia una calidad inferior.

Determinación de la presencia de la translocación de centeno mediante análisis citológicos.

Se analizaron placas metafásicas en meristemas radiculares. Los ápices radiculares fueron pre - tratados durante 20 horas en una solución saturada de alfa-bromo-naftaleno a 4°C. Estos se fijaron luego en ácido acético puro. Después de aproximadamente tres días, se realizó una hidrólisis en ácido clorhídrico 1N durante 17 minutos a 60°C. Para la coloración, se utilizó fucsina básica y los aplastados de los ápices radiculares se realizaron en orceína acética al 2% (p/v).

1.3. Caracterización molecular de los loci de proteínas de reserva de Gluteninas de bajo peso molecular, Xglu-A3 y gamma-gliadinas Xgli-B1, mediante microsatélites.

Extracción de DNA

Se realizaron las extracciones de DNA a partir de material fresco de hojas de 5 plantas de cada uno de los 140 genotipos de la colección de cultivares. Las extracciones se llevaron a cabo según Shangai-Maroof et al. (1984), modificado para pequeños volúmenes (Sacco, comunicación personal).

Mediante medición espectrofotométrica se realizó la cuantificación de los ADN extraídos y para el control de la integridad del mismo se sembraron 2 μ l de cada una de las muestras en geles de agarosa 0,8 % con bromuro de etidio (0,1 μ g/ μ l), TAE 1X. La electroforesis se llevó a cabo a 4,5 V/cm (corriente constante) durante 1 h. Se visualizaron en un transiluminador de luz UV.

Análisis mediante microsatélites

Se analizaron las variantes alélicas del locus de las proteínas de reserva gamma-gliadinas mediante el microsatélite, Xpsp3000 (Devos et al, 1995). Este microsatélite está ubicado dentro del locus del gen de las γ-gliadinas (Xps2(Gli-1)).

Asimismo, se analizaron las variantes alélicas del locus de las proteínas de reserva Gluteninas de bajo peso molecular (LMW-GS) el microsatélite, Xpsp2999 (Devos et al, 1995). Este microsatélite se halla ubicado dentro del locus del gen de las gluteninas de bajo peso molecular Xps(Glu-A3), en el brazo corto del cromosoma 1A.

Las reacciones de amplificación (PCR) se llevaron a cabo en una termocicladora Perkin Elmer (modelo 480, EUA), con una temperatura de apareamiento ("annealing"): 55° C. La concentración final de los diferentes reactivos usados en las reacciones de PCR fueron: $200 \, \mu\text{M}$ de dNTPs; $1,5 \, \text{mM} \, \text{Mg}^{++}$ ($3 \, \text{mM}$); $100 \, \text{nM}$ de cada primer; $0,5 \, \text{U}$ Taq-polimerasa y $25 \, \text{ng}$ de ADN como templado en un volumen de reacción de $12 \, \mu\text{l}$.

Los productos de amplificación se separaron en geles desnaturalizantes de policrialamida 6% (19:1 acrilamida: bis-acrilamida) con separadores de 0,4 mm., a 40 Watts durante 2horas 30minutos y se detectaron mediante tinción con nitrato de plata, de acuerdo al protocolo de Tinción con Plata para Secuenciación de Promega Biotech (EUA).

Los resultados se evaluaron manualmente, colocando los vidrios sobre un transiluminador de luz blanca. Para determinar el tamaño de los fragmentos amplificados, se utilizaron como estándares el marcador de tamaño molecular 25 pb DNA Ladder (Life Technologies -Gibco BRL- EUA) y la secuencia nucleotídica de M13ssDNA obtenida mediante la Secuenciación GATC con el sistema Silver Sequence™ DNA Sequencing Reagents Kit de Promega Biotech (EUA) adaptado para revelado con nitrato de plata. El cálculo del tamaño molecular de las bandas, se realizó mediante comparación de la migración relativa con los marcadores por medio del método de los recíprocos (Elder y Southern, 1987), empleado un programa de computación ad hoc creado en el laboratorio por el Dr. Jorge Dubcovsky.

Estimación del nivel de polimorfismo

El índice de polimorfismo (PIC) de los marcadores empleados se calculó según la formula de Anderson (1993): $PIC_i = 1 - \sum_{j=1}^{n} p_{ij}^2$, donde p es la frecuencia del alelo j para el marcador i.

1.4. Microsatélites asociados con brotado pre-cosecha

Se analizaron los distintos cultivares del proyecto con dos marcadores *wmc104* y *MST101* situados en los cromosomas 6B y 7D, respectivamente y citados en el trabajo de Roy et al. 1999.

1.5. Caracterización molecular de los loci Pina-D1 y Pinb-D1, relacionados con textura de grano

El genotipo para los genes que codifican las puroindolinas en un cultivar, puede conocerse mediante análisis PCR. De esta manera, es posible discriminar trigos genéticamente duros de los genéticamente blandos, siendo posible descartar el efecto ambiental en la selección de cultivares superiores. Estos análisis se aplicaron para evaluar 51 líneas selectas para este proyecto.

Las reacciones de amplificación (PCR) se llevaron a cabo en una termocicladora Perkin Elmer (modelo 480, EUA), con una temperatura de apareamiento ("annealing") de 55°C. Las reacciones de amplificación se realizaron con 50-100ng de ADN como templado (cuya extracción se describió previamente), en un volumen final de reacción de 50µl, con

concentraciones de 250 μ M de dNTPs, 1.5 mM de Mg²⁺, 1ng/uL de cada primer y 2.5 unidades de Tag polimerasa.

Para el análisis del gen Pina-D1 se utilizaron los primers específicos y condiciones descriptos por Gautier et. al. (1994). Este marcador es de tipo dominante.

Para el análisis del gen Pinb-D1 se utilizaron marcadores codominantes, alelo - específicos (CAPS, cleavage amplified polymorphic sequence), disponibles para las variantes alélicas Pinb-D1b y Pinb-D1c (**Cuadro 1**) (Tranquilli et al 1999, Lillemo y Morris, 2000). Este marcador combina amplificación y posterior digestión del producto de PCR con la enzyma Bsr BI o Pvu II, respectivamente.

En todos los casos, los productos de PCR se visualizaron en geles de agarosa al 2%, teñidos con bromuro de etidio.

- 2. Determinación de factores reológicos y de procesamiento relacionados con la calidad industrial y definición de parámetros relevantes para la eficiente selección de germoplasma
- 2.1. Caracterización del germoplasma según parámetros fisicoquímicos, factores reológicos y de procesamiento, en distintos ambientes

Muestras de trigo

En el **Cuadro 2** figuran los genotipos utilizados y el país de origen. Por no disponerse de suficiente cantidad de semilla, los cultivares de Brasil no pudieron ser utilizados para estos ensayos. Los 112 materiales fueron sembrados en 13 ambientes: tres localidades de Argentina (Balcarce, Marcos Juárez y Roque Sáenz Peña) en el año 2002, tres localidades de Chile (Carillanca, La Platina y Quilamapú), tres ambientes de México (Ciudad Obregón sembrado en el año 2001 y Toluca los años 2001 y 2002), dos localidades de Paraguay (Yguazú y Capitán Miranda año 2002) y dos ambientes de Uruguay (La Estanzuela, años 2000 y 2002). En el **Cuadro 4**, figura un listado de los ambientes con el número asignado.

Como se dijo oportunamente, problemas sanitarios de la cosecha 2001 en gran parte de la región imposibilitaron el normal desarrollo del proyecto. La mayoría de las localidades sembradas fueron afectadas por fusariosis de la espiga, por lo que el grano cosechado poseía una calidad no apta para cumplir con los requisitos de análisis del proyecto. Esto causó un retraso en los análisis. Para poder cumplir con los tiempos definidos por FONTAGRO, se realizó en primera instancia el análisis completo de un subgrupo predeterminado de muestras, detallado en el **Cuadro 3**. Actualmente, el resto de los materiales ya fueron analizados en algunas localidades, mientras que los de las localidades restantes se están analizando.

Análisis

Las muestras fueron analizadas en el país donde fueron sembradas, en los laboratorios de INTA Marcos Juárez (Argentina), INIA La Platina (Chile), CIMMYT (México), CRIA (Paraguay) e INIA La Estanzuela (Uruguay). Los distintos tests fueron realizados previamente en estos laboratorios de tal forma de verificar la reproducibilidad de los resultados.

A las muestras de trigo se les determinó peso hectolítrico (método AACC 55-10 y equivalentes), dureza (NIR calibrado por PSI según AACC 55-30 en México, método de perlado en Chile y PSI según AACC 55-30 en Uruguay) y porcentaje de proteína en grano (método AACC 46-11, con modificaciones, en Uruguay). El rendimiento harinero fue determinado en las muestras argentinas en un molino Buhler MLU 202.

La harina obtenida de las muestras de trigo fue analizada para obtener Falling Number (AACC 56-81B), porcentaje de proteínas (Kjeldahl por AACC 46-11 o NIR calibrado por este método), sedimentación con SDS (Peña et al. 1990), gluten húmedo, seco e Índice de Gluten (AACC 38-12), mixogramas (AACC 54-40), farinograma (AACC 54-21) alveograma (AACC 54-30) y pan (AACC 10-10). Las muestras de Argentina de genotipos que podrían tener un potencial uso en galletería fueron testeadas según norma AACC 10-50.

Las abreviaturas utilizadas para cada parámetro figuran en el Cuadro 5.

Cuadro 2 - Genotipos utilizados y su país de origen

ENTRADA	IDENTIFICACION	ORIGEN
1.	LAP 4094	ARGENTINA
2.	VICTORIA INTA	ARGENTINA
3.	KLEIN IMPACTO	ARGENTINA
4.	PROINTA CALIDAD	ARGENTINA
5.	MARCOS JUÁREZ INTA	ARGENTINA
6.	J97031 = KLT"S"/4/COW"S"/3/NAD//BB/INIA/5/RTNI	ARGENTINA
7.	BUCK NAPOSTÁ	ARGENTINA
8.	PROINTA GRANAR	ARGENTINA
9.		ARGENTINA
10.	PROINTA ALAZÁN	ARGENTINA
11.	PROINTA GUAZÚ	ARGENTINA
12.	EZORZAL//ND376*3/GIZA74003/3/BPUC	ARGENTINA
13.	BUCK PONCHO	ARGENTINA
14.	BUCK CHARRÚA	ARGENTINA
15.	COOPERACIÓN LIQUEN	ARGENTINA
16.	LA PAZ INTA	ARGENTINA
17.	PROINTA PINCÉN	ARGENTINA
18.	PROINTA HUEN PAN	ARGENTINA
19.	PROINTA COLIBRÍ	ARGENTINA
20.	KLEIN 32	ARGENTINA
21.	PROINTA CINCO CERROS	ARGENTINA
22.		ARGENTINA
23.	PROINTA IMPERIAL	ARGENTINA
24.	BUCK CAUDILLO	ARGENTINA
25.	BUCK ARRIERO	ARGENTINA
26.	TEZANOS PINTO PRECOZ	ARGENTINA
27.		ARGENTINA
28.		ARGENTINA
29.	KLEIN COBRE	ARGENTINA
30.	DON ERNESTO INTA	ARGENTINA
31.	BUCK PANADERO	ARGENTINA
32.	PROINTA AMANECER	ARGENTINA
33.	KLEIN ESTRELLA	ARGENTINA
34.	KLEIN ORIÓN	ARGENTINA
35.	BUCK PRONTO	ARGENTINA
36.	KLEIN TOLEDO	ARGENTINA
37.	BUCK YATASTO	ARGENTINA
38.	LAP 3363	ARGENTINA
	LAP 3495	ARGENTINA
	LAP 3679	ARGENTINA
41.	ITAPÚA 40	PARAGUAY

ENTRADA	IDENTIFICACION	ORIGEN
42.		PARAGUAY
43.		PARAGUAY
44.	IAN-9	PARAGUAY
45.	E-91081	PARAGUAY
	E-91079	PARAGUAY
	E-91075	PARAGUAY
	E-94085	PARAGUAY
52.	C-91181	PARAGUAY
53.	E-92225	PARAGUAY
54.		PARAGUAY
55.	C-93472	PARAGUAY
	E-96052	PARAGUAY
57.	E-92227	PARAGUAY
58.	ESTANZUELA TARARIRAS	URUGUAY
59.		URUGUAY
60.	ESTANZUELA HORNERO	URUGUAY
61.	ESTANZUELA CARDENAL	URUGUAY
62.		URUGUAY
	ESTANZUELA FEDERAL	URUGUAY
64.	ESTANZUELA PELÓN 90	URUGUAY
65.	ESTANZUELA HALCÓN	URUGUAY
66.	INIA MIRLO	URUGUAY
67.	INIA CHIMANGO	URUGUAY
68.		URUGUAY
69.	INIA BOYERO	URUGUAY
70.	LE 2193-INIA CABURÉ	URUGUAY
71.	LE 2233-INIA BÚHO	URUGUAY
	LE 2245-INIA GORRIÓN	URUGUAY
	LE 2249-INIA CHURRINCHE	URUGUAY
	LE 2240	URUGUAY
	LE 2232	URUGUAY
	LE 2278	URUGUAY
77.	LE 2281	URUGUAY
	LE 2282	URUGUAY
	LE 2283	URUGUAY
	HUAÑIL INIA 1786	CHILE
	HUAYUN INIA 2285	CHILE
82.	MILLALEU INIA 48	CHILE
83.	CIKO INIA P002/97	CHILE
84.	DOMO INIA 2841	CHILE
85.	KALIPAN INIA QUI 889-94	CHILE
86.	TAMOI INIA P106/99	CHILE
87.	NAOFEN INIA 49	CHILE
88.	COYAN INIA 2064	CHILE
	MAQUI INIA 64	CHILE
90.		CHILE
91.		CHILE
92.	042/97	CHILE
93.		CHILE
	P150/96	CHILE
	PIA P183/98	CHILE
96.		CHILE
97.	P110/98	CHILE
98.		CHILE
	P065/96	CHILE
	P007/98	CHILE
	TOROPI P105/99	CHILE
102.		CHILE
	P034/97	CHILE
	P035/97	CHILE
	P041/97	CHILE
	P052/98	CHILE
107.		CHILE
108.	1763 2916	CHILE
109.		CHILE

110.	2917	CHILE
111.	P108/98	CHILE
112.	1774	CHILE
113.	P088/98	CHILE
114.	2321	CHILE
115.	P193/98	CHILE

Las entradas 48, 49 y 50 fueron eliminadas, debido a que eran genotipos repetidos. Por lo tanto, este set cuenta con un total de 112 genotipos diferentes.

Cuadro 3 - Genotipos analizados totalmente y su país de origen

NTRADA	IDENTIFICACION	ORIGEN
2	VICTORIA INTA	ARGENTINA
6	J97031= KLT"S"/4/COW"S" /3/NAD//BB/INIA/5/RTNI	ARGENTINA
9	PROINTA REAL	ARGENTINA
10	PROINTA ALAZÁN	ARGENTINA
11	PROINTA GUAZÚ	ARGENTINA
13	BUCK PONCHO	ARGENTINA
19	PROINTA COLIBRÍ	ARGENTINA
	KLEIN 32	ARGENTINA
21	PROINTA CINCO CERROS	ARGENTINA
22	FONTEZUELA INTA	ARGENTINA
24	BUCK CAUDILLO	ARGENTINA
25	BUCK ARRIERO	ARGENTINA
28	PROINTA CAUQUÉN	ARGENTINA
30	DON ERNESTO INTA	ARGENTINA
31	BUCK PANADERO	ARGENTINA
32	PROINTA AMANECER	ARGENTINA
33	KLEIN ESTRELLA	ARGENTINA
	BUCK PRONTO	ARGENTINA
36	KLEIN TOLEDO	ARGENTINA
41	ITAPÚA 40	PARAGUAY
42	IAN.8	PARAGUAY
44	IAN-9	PARAGUAY
47	E.91075	PARAGUAY
52	C.91181	PARAGUAY
	C.91181	PARAGUAY
	ESTANSUELA CARDENAL	URUGUAY
	ESTANZUELA FEDERAL	URUGUAY
	ESTANZUELA HALCÓN	URUGUAY
	LE 2210.INIA TIJERETA	URUGUAY
	INIA BOYERO	URUGUAY
	LE 2193.INIA CABURÉ	URUGUAY
	LE 2245.INIA GORRIÓN	URUGUAY
	LE 2249.INIA CHURRINCHE	URUGUAY
	LE 2240	URUGUAY
	LE 2283	URUGUAY
	HUAÑIL INIA 1786	CHILE
	HUAYUN INIA 2285	CHILE
83	CIKO INIA POO2/97	CHILE
85	KALIPAN INIA QUI 889-94	CHILE
86	TAMOI INIA P106/99	CHILE
87	NAOFEN INIA 49	CHILE
	MAQUI INIA 64	CHILE
90	OPALA	CHILE
	PO30/97	CHILE
	042/97	CHILE
	P102/96	CHILE
	PIA P183/98	CHILE
	P139/98	CHILE
102		CHILE
	P034/97	CHILE
	P034/97	CHILE

Cuadro 4 - Listado de ambientes

#	Descripción	País
1	BALCARCE	Argentina
2	MARCOS JUAREZ	Argentina
3	ROQUE SAENZ PEÑA	Argentina
4	LA PLATINA	Chile
5	QUILAMAPU	Chile
6	CARILLANCA	Chile
7	Y. 01-02	México
8	MV. 01	México
9	MV. 02	México
10	CETAPAR	Paraguay
11	CRIA	Paraguay
12	LA ESTANZUELA 2000	Uruguay
13	LA ESTANZUELA 2002	Uruguay

Cuadro 5 - Lista de abreviaturas de los parámetros determinados

Abreviatura	Significado	
ABFA	Absorción del farinograma (%)	
ABMIX	Absorción del mixograma (%)	
ALPL	Alveograma P/L (relación tenacidad/extensibilidad)	
ALW	Alveograma W (j/10000)	
CF12	Aflojamiento a los 12 min (UB)	
DCH	Dureza de grano Chile (%)	
DMX	Dureza de grano MEXICO (%)	
EFA	Estabilidad del farinograma (min)	
FN	Falling Number (seg)	
GH	Gluten húmedo (%)	
GS	Gluten seco (%)	
IG	Indice de Gluten (%)	
MAL	Altura del mixograma (cm)	
PH	Peso hectolítrico (kg/hl)	
PKG	Peso de 1000 granos (g)	
PRG	Proteína en grano al 12.5 % bh (%)	
PRH	Proteína en Harina al 14.0 % bh (%)	
PSI	Indice de tamaño de partícula (%)	
RH	Rendimiento de harina (%)	
SDSH	Sedimentación en harina refinada (ml)	
TDFA	Tiempo de desarrollo del farinograma (min)	
TM	Tiempo mixografico (min)	
WFA	W de farinograma	

2.2. Análisis estadístico de los experimentos de calidad

A continuación, se presentan las abreviaturas de las variables analizadas, ya que ellas serán usadas en los resultados de los análisis estadísticos. Así mismo, se presentan los códigos de los ambientes usados en los análisis. Los ambientes de cada país son combinaciones de localidades y años. En los análisis combinados a través de ambientes, estos fueron identificados con una letra correspondiente al país de referencia. Por ejemplo, los tres ambientes de México aparecen como M1, M2 y M3.

Ambientes:

M1	Y. 01-02	México
M2	MV. 01	México
M3	MV. 02	México
P4	CRIA 2001	Paraguay
P5	CETAPAR 2001	Paraguay
P6	CRIA 2002	Paraguay
P7	CETAPAR 2002	Paraguay
A8	BALCARSE	Argentina
A9	CASTELAR	Argentina
A10	MARCOS JUAREZ	Argentina
A11	ROQUE SAENZ PEÑA	Argentina
U12	FONTAGRO 2000	Uruguay
U13	FONTAGRO 2002	Uruguay
C14	PLATINA	Chile
C15	QUILAMAPU	Chile
C16	CARILLANCA	Chile

Abreviaturas:

PH	Peso Hectolítrico	
PKG	Peso de 1000 granos	
DMX	Dureza de grano MEXICO	
DCH	Dureza de grano Chile	
PSI	Indice de tamaño de partícula	
HCMX	Hardness class MEXICO	
HCAR	Hardness class ARGENTINA	
RH	Rendimiento de harina	
FN1	F. N. consecha en Madurez normal	
FN2	F. N. Muestra en agua por 8 hrs.	
FN3	F. N. Muestra cosecha 30 días después	
GER	% de germinación	
PRG	Proteína en grano al 12.5% bh	
PRH	Proteína en harina al 14.0 % bh	
SDSG	Sedimentación en grano	
SDSH	Sedimentación en harina refinada	
GS	Glutén seco	
GH	Glutén húmedo	
IG	Indice de Gluten	
ABMIX	Absorción del mixograma	
TM	Tiempo mixográfico	
MAL	Altura del mixograma	
EMIX	Estabilidad del mixograma	
TSA	Tolerancia al sobreamasado	
TIPM	Tipo mixográfico	
ABFA	Absorción del farinograma	
WFA	W de Farinograma	
TIFA	Tiempo de desarrollo del Farinograma	
EFA	Estabilidad del Farinograma	
CF12	Aflojamiento a los 12 min	

CF20	Aflojamiento a los 20 min UB
VFA	Cifra valorimétrica de farinograma
ALW	Alveograma W (Trabajo)
ALPL	Alveograma P/L (Fuerza-Tenacidad/Extensibilidad)
TDMP	Tiempo de desarrollo masa de Pan
PP	Peso del pan
VP	Volumen de pan
EM	Estructura de miga
GLUA1MX	Gluteninas en 1 A México
GLUB1MX	Gluteninas en 1 B México
GLUD1MX	Gluteninas en 1 D México
GLUB3MX	Gluteninas en 3 B México
GLUA3MX	Gluteninas en 3 A México
1B1RMX	Translocación 1B/1R México
1B1RARG	Translocación 1B/1R Argentina
GLUA3ARG	Gluteninas en 3 A Argentina
GLIB1ARG	Gliadinas en 1 A Argentina
PINAB	PIN A b
PINBB	PIN B b
PINAD1	PINA – D1
PINBD1	PINB – D1

Los análisis estadísticos fueron realizados para poder cumplir con los siguientes objetivos:

- 1) Identificar asociación y relación de variables para, en el futuro, poder medir solo las variables más relevantes para el investigador.
- 2) Identificar sitios relevantes que discriminen genotipos y sean buenos representantes del grupo de sitios usados en la evaluación.
- 3) Identificar genotipos estables a través de ambientes y detectar aquellos que tienen una respuesta destacada en ciertos ambientes específicos.

Los análisis realizados fueron los siguientes:

- Estimación de componentes de varianza por país y por variable.
- Análisis de Componentes Principales (PCA) por país, para estudiar la relación entre variables.
- Estudio de la interacción genotipo x ambiente para detectar genotipos estables y adaptados a ciertos ambientes y para estudiar la relación entre sitios, sus similitudes y diferencias. Estos análisis se hicieron por país y a través de países.
- Análisis de varianza por país y variable usando las variables genéticas como variables de clase.
- Análisis de regresión múltiple por país, donde las variables genéticas se usaron como variables de clase. Un método de selección de variable fue usado para identificar las variables genéticas, que mas explican las variables fenotípicas de respuestas medidas en el campo.

2.3. Influencia del medio ambiente sobre los parámetros de calidad de trigo harinero (riego vs. secano en México)

Materiales

Genotipos del Cuadro 3.

Ambientes

Y01-02. Ciudad Obregón, Sonora, Noroeste de México, 50msnm. Esta localidad proporciona condiciones optimas de fertilización y riego, bajo las cuales se obtiene muy buena expresión de potencial de rendimiento y de potencial de calidad. No se obtuvo semilla de prueba en cultivares de tipo invernal, las cuales son de ciclo muy largo para esta localidad.

MV01, **MV02**. Toluca, altiplano central de México, 2300msnm. Esta localidad es de secano, con precipitación abundante hacia el desarrollo del grano. El llenado de grano puede ser deficiente (ligeramente chuzo a muy chuzo) debido a cambios en la frecuencia de la precipitación, fluctuaciones en temperatura y la presencia de enfermedades que afectan tanto la sanidad de la planta, como a la sanidad y el llenado del grano. No se obtuvo semilla de prueba en cultivares de tipo invernal, las cuales, también, son de ciclo muy largo para este sitio. En esta localidad se obtuvieron muestras de dos años; 2001 y 2002 los cuales, por sus diferencias ambientales (mayor precipitación y mayores fluctuaciones de temperatura en 2001 que en 2002), fueron considerados como dos ambientes distintos.

Métodos

Parámetros de calidad: los parámetros de calidad evaluados fueron: peso hectolitrico, dureza de grano y contenido de proteína (ambos por métodos de tecnología NIR), actividad enzimática o nivel de germinación de grano (método de índice de caída. "Falling Number") volumen de sedimentación-SDS, desempeño en el Mixógrafo (tiempo de amasado, estabilidad durante el sobre amasado, tolerancia al sobre amasado, desempeño en el Alveógrafo (trabajo de insuflación de masa (W), relación entre altura, P y longitud L de la curva generada durante la insuflación, conocida como índice de extensibilidad, P/L) y volumen de pan. Los métodos utilizados fueron en su mayoría los descritos en el manual de métodos oficiales de la asociación americana de químicos en cereales (AACC, 1995), los cuales han sido descritos anteriormente. El análisis estadístico (análisis de variancia y diferencias mínimas significativas) fue ejecutado tomando los ambientes Y-01-02, MV-01 y MV-02 como variables comparativas y utilizando el paquete estadístico SAS.

2.4. Evaluación de tolerancia a la germinación de granos en espiga en caja de Madera. Prueba en forma inducida

Para esta prueba se utilizaron los 112 materiales genéticos de el **Cuadro 2**, en los ciclos 2001 y 2002. Las espigas evaluadas corresponden al vivero que fue establecida en dos localidades, Capitán Miranda (CRIA) y Colonia Yguazú (CETAPAR).

La metodología consistió básicamente en la recolección al azar de 10 espigas individuales por cada material genético evaluado. La misma se efectuó cuando todos estaban en estado de madurez fisiológica, con cada cultivar previamente bien identificado.

Posteriormente, se colocaron todas las espigas en forma vertical en una caja de madera, especialmente preparada para realizar las pruebas de germinación inducida. La caja de madera contó con un higrómetro (AND Ind., Japón), para registrar la humedad relativa y, también, un Termómetro (Máxima y Mínima en forma de U, AND Ind., Japón), para registrar temperaturas máximas y mínimas.

Una vez colocadas todas las espigas en la caja de madera, para la germinación inducida, se procedió a irrigar las mismas con agua, por el término de 6 días continuos, con dos riegos diarios. En la mañana se irrigó a las 08:00 horas y en la tarde a las 16:00 horas.

Una vez irrigada todas las espigas, se procedió a cubrir la caja con una bolsa de polietileno.

Durante los 6 días se registraron la humedad relativa y las temperaturas máximas y mínimas en el mismo horario del riego.

Del vivero establecido en el CRIA y en CETAPAR, se obtuvieron los porcentajes de germinación de granos en espigas, para las cuales, una vez transcurridos los 6 días de riego, se procedió a la extracción y conteo en forma individual de cada grano por espiga (germinados y no germinados). Por último, los resultados fueron convertidos a porcentajes de granos germinados, los cuales fueron promediados.

2.5. Prueba de Falling Number

Para esta prueba se utilizaron los 112 materiales genéticos (**Cuadro 2**), durante el ciclo 2002, en las localidades del CRIA en Capitán Miranda y del CETAPAR en Yguazú.

Básicamente, la metodología incluyó tres aspectos:

- 1. Falling Number (F.N.) de la harina de los materiales cosechados en estado de madurez normal.
- 2. F.N. de la harina de los materiales cosechados 30 días después de la cosecha normal.
- 3. F.N. de la harina de los materiales genéticos cuyos granos permanecieron sumergidos en agua por 8 horas.

Todas las muestras fueron analizadas con el equipo de Falling Number 1500 (Ind. Sweden), en el laboratorio de calidad de trigo del CRIA de Capitán Miranda.

3 - Relación entre factores moleculares y los parámetros de calidad de trigos cultivados en ambientes diversos de países del Cono Sur y México

3.1. Materiales

Este estudio se realizó sobre los 51 genotipos de el **Cuadro 3**. El cultivo de los materiales se efectuó en localidades varias (ambientes diversos) de Argentina, Chile, México, Paraguay y Uruguay en 2001 y/o 2002.

3.2. Métodos

De los análisis mencionados en secciones precedentes, fueron seleccionados para este estudio los siguientes:

Parámetros de calidad (genotípicos) evaluados:

Germinación-espiga. México y Paraguay, utilizando el método de Falling Number y

germinación de espigas bajo precipitación simulada.

Dureza del grano. Chile, México, Uruguay, utilizando los métodos NIR y índice de

tamaño de partícula (PSI).

Gluten seco, húmedo Argentina, Uruguay, parámetro del método Glutomatic

Índice de gluten. Uruguay, parámetro del método Glutomatic Proteína grano. Argentina, Chile, México, Uruguay, NIR, Kjeldahl.

Sedimentación-SDS. Chile, México, Uruguay, Paraguay, método sedimentación-SDS.

Caract. de amasado.
Caract. de amasado
Fuerza y extensibilidad
Caract. Panificación

Argentina, México, Uruguay, Mixógrafo
Argentina, Chile, Paraguay, Farinógrafo
Argentina, México, Uruguay, Alveógrafo
Argentina, Chile, México, Método AACC.

Parámetros bioquímicos /moleculares (genotípicos):

Puroindolinas (dureza). Argentina, Chile, Mutaciones Pina-D1, Pinb-D1. PCR.

Translocación 1B/1R Argentina, secalinas en A-PAGE; México, secalinas en SDS-

PAGE

Gluteninas APM. Argentina, Chile, México, variantes *Glu-1* en SDS-PAGE.

Gluteninas BPM. Argentina, variantes *Glu-A3*. Microsatélites.

Gluteninas BPM. México, variantes Glu-A3 y Glu-B3 en SDS-PAGE

Gliadinas omega. Argentina, variantes *Gli-B1* en A-PAGE.

3.3. Análisis estadístico

Se efectuó un análisis de regresión múltiple y se busco el modelo que generara el mayor valor acumulado de Coeficiente de Determinación (R²). Se tomaron los factores genotípicos como variables. El análisis fue realizado por país, utilizando la información de calidad correspondiente (todos los ambientes en conjunto). Para el análisis se utilizó el paquete estadístico SAS.

RESULTADOS OBTENIDOS

1. Determinación de factores moleculares asociados con las características de calidad de gluten y de utilidad en el mejoramiento de la calidad industrial del trigo

1.1. Caracterización electroforética de la composición de subunidades de gluteninas de alto peso molecular (HMW-Gs)

En el **Cuadro 1** se indican las subunidades encontradas para gluteninas de alto peso molecular en los 140 genotipos estudiados por México. Argentina, por su parte, evaluó una muestra de 42 de estos genotipos, siendo sus resultados coincidentes con los de México, por lo cual no se adjuntan no se adjuntan en otro tabla. Se encontró una gran variabilidad para la composición de gluteninas de alto peso molecular, siendo *Glu-B1* el locus con mayor variabilidad. Veintidós de las variedades no fueron homogéneas en su composición, segregando para uno (o dos) de los loci. Para *Glu-D1* se hallaron las dos variantes más comunes del trigo harinero (subunidades 5+10 y 2+12), siendo las subunidades 5+10 las más frecuentes (107 entradas), mientras que en tres cultivares se encontraron presentes ambas variantes.

Cuadro 1 - Composición de gluteninas de alto peso molecular para las 140 entradas, analizadas por México

Entrada	Glu-A1	Glu-B1	Glu-D1
1	1	7+9	5+10
2	2*	7*+8	5+10
3	1/2*	7+9	5+10
4	2*	7*+8	5+10
5	1	7*+8	5+10/2+12
6	1/2*	13+16	5+10
7	2*	7+8	5+10
8	2*	13+16	5+10
9	2*	7*+8	5+10
10	2*	17+18	5+10
11	1	7+9	5+10
12	1	7+9	5+10
13	2*	7*+8/7+9	5+10
14	2*	7*+8/7+9	2+12
15	2*	7+9	5+10
16	1/2*	7+8/7+9	5+10
17	2*	7+8	5+10
18	1	17+18	5+10
19	1	7+8	5+10
20	0	7*+8	5+10
21	1	13+16	5+10
22	2*	6+8	2+12
23	1	7+8/7+9	5+10
24	2*	7+8	5+10
25	1	7+8	5+10
26	1	7+8	2+12
27	2*	7*+8	5+10
28	2*	7+9	5+10
29	1	7*+8	5+10
30	2*	7+9	5+10
31	2*	7*+8	5+10
32	1	17+18	5+10
33	2*	7+8	5+10
34	1	7+8	5+10
35	2*	7+8	5+10
36	1	7*+8	5+10

Entrada	Glu-A1	Glu-B1	Glu-D1
37	1	7+8	5+10
38	2*	7+9	5+10
39	2*	17+18/7+9	2+12
40	1	7*+8/13+16	5+10
41 42	2* 2* 2*	7+9 7+9	5+10 5+10
42	2*	7+9	5+10 5+10
44	2*	7+9	2+12
45	1	7+9	5+10
46	1/2*	7+9	2+12
47	1/2*	7+9	5+10
51	2*	7+9	5+10
52	2*	13+16	5+10
53	1/2*	7+9	5+10
54	1/2*	7+9	5+10
55	2*	7+9	5+10
<u>56</u> 57	2* 1	7+9 7+9	5+10 5+10
58	2*	7*+8	5+10 5+10
59	1	7*+8	5+10
60	1	7+9	5+10
61	1	7+9	5+10
62	0	17+18	5+10
63	2*	7+9	5+10
64	1	13+16	5+10
65	1/2*	7*+8	5+10
66	2*/1	7+9	5+10
67	2*	7*+8	5+10
68 69	2* 2*	17+18 7+9	5+10 5+10
70	0	7+9	5+10 5+10
71	2*	7*+8	5+10
72	2*	7+9	5+10
73	2*	7*+8	5+10
74	2*	7*+8	5+10
75	2*	17+18	5+10
76	1	7*+8	5+10
77	2*	7*+8	2+12
78	1	7*+8	5+10
79	1	7*+8	5+10
80 81	2* 2*	17+18 7+9	2+12 5+10
82	1	7+9	5+10 5+10
83	2*	17+18	2+12
84	2*	7	5+10/2+12
85	1	17+18	5+10
86	2*	17+18	5+10
87	0	17+18	2+12
88	2*	17+18	5+10
89	1/2*	13+16	5+10
90	2*	13+16	5+10
91 92	2* 1	7+9 7*+8	5+10 5 - 10
92		7°+8 7+9	5+10 2+12
93	2* 2*	7+9	5+10/2+12
95	2*	7+9	2+12
96	1	13+16	5+10
97	2*	7+9	5+10
98	2*	7+9	2+12
99	2*/1	17+18	5+10
100	2*	7+9	2+12
100	2*	7+9	2+12
101	2*	7+9	5+10
102 103	2* 2*	7*+8 7+9	2+12 5+10
103		1+9	D+1U

Entrada	Glu-A1	Glu-B1	Glu-D1
104	2*	7+9	5+10
105	2*	17+18	2+12
106	2* 2* 2*	7+9	5+10
107	2*	17+18	2+12
108	2*	7+9	5+10
109	2*	7+9	2+12
110	2* 2*	17+18	5+10
111	2*	7+9	5+10
112	2*	13+16	2+12
113	2* 2*	17+18	2+12
114	2*	17+18	2+12
115	2*	7+9	5+10
116	0	7+8	2+12
117	0 2*	13+16	2+12
118	2*	7+9	5+10
119	2* 2*	7+8	5+10
120	2* 2*	17+18	2+12
121	2*	7*+8	2+12
122	1	7+8	5+10
123	2*	7+9	2+12
124	0	17+18	5+10
125	1	17+18	5+10
126	0	7*+8	5+10
127	1	17+18	5+10
128	2*	7+9	5+10
129	2*	7+9	2+12
130	1	7+8	5+10
131	2*	7*+8	5+10
132	2*	7*+8	5+10
133	1	13+16	5+10
134	1	7+9	5+10
135	2*	13+16	2+12
136	2*	7+8/17+18	5+10
137	2* 2*	7+9	2+12
138	2*	7+9	5+10
139	1	17+18	5+10
140	2*	13+16	2+12
141	1	17+18	5+10
142	2*	7+9	2+12
143	0	17+18	2+12

Chile evaluó las 51 entradas seleccionadas (**Cuadro 4**) y los resultados obtenidos se indican en el **Cuadro 2**.

Cuadro 2- Identificación de HMW-Gs en vivero selección FONTAGRO. Carillanca, 2003

ENTRADA	ORIGEN			
		Α	В	D
2	ARGENTINA	2*	7+8	5+10
6	ARGENTINA	(1/2*)	13+16	5+10
9	ARGENTINA	2*	7+8	5+10
10	ARGENTINA	2*	17+18	5+10
11	ARGENTINA	1	7+9	5+10
13	ARGENTINA	2*	7+8	5+10
19	ARGENTINA	1	7+8	5+10
20	ARGENTINA	0	7+8	5+10
21	ARGENTINA	1	(?)	5+10
22	ARGENTINA	0	6+8	2+12
24	ARGENTINA	2*	7+8	5+10
25	ARGENTINA	1	7+8	5+10
28	ARGENTINA	(1/2*)	7+9	5+10
30	ARGENTINA	2*	7+9	5+10
31	ARGENTINA	2*	7+8	5+10
32	ARGENTINA	1	17+18	5+10
33	ARGENTINA	2*	7+8	5+10
35	ARGENTINA	2*	7+8	5+10
36	ARGENTINA	1	7+8	5+10
41	ARGENTINA	2*	7+9	5+10
42	ARGENTINA	2*	(7+9/17+18)	5+10
44	ARGENTINA	2*	7+9	5+10
47	PARAGUAY	(1/2*)	7+9	5+10
52	PARAGUAY	2*	13+16	5+10
57	PARAGUAY	1	7+9	5+10
61	URUGUAY	1	7+9	5+10
63	URUGUAY	2*	7+9	5+10
65	URUGUAY	1	7+8	(2+12/5+10)
68	URUGUAY	2*	17+18	5+10
69	URUGUAY	2*	7+9	5+10
70	URUGUAY	0	7+7	5+10 5+10
72	URUGUAY	2*	7+6	5+10
73	URUGUAY	2*	7+8	5+10
74	URUGUAY	2*	7+8	5+10
79	URUGUAY	1	7+8	5+10
80	CHILE	1	17+18	2+12
81	CHILE	2*	7+9	5+12 5+10
83	CHILE	0	17+18	2+12
85	CHILE	1	17+18	5+10
86	CHILE	2*	17+18	5+10
87	CHILE	0	17+18	2+12
89	CHILE	(1/2*)	13+16	5+12 5+10
90	CHILE	2*	13+16	5+10
91	CHILE	2*	7+9	5+10
92	CHILE	1	7+9	5+10
93	CHILE	0	7+0	2+12
95	CHILE	0	7+9	2+12
96	CHILE	1	13+16	5+10
102	CHILE	0	7+8	2+12
102	CHILE	2*	7+8	5+10
105	CHILE		17+18	
100	UTILE	0	1/+1ŏ	2+12

^(**) Las anotaciones entre paréntesis indican que los dos alelos específicos fueron observados en los geles, con intensidad similar. No se investigó la posibilidad que los genotipos con esta condición sean heterogéneos para los loci en cuestión

1.2. Caracterización electroforética de los bloques de gliadinas presentes en las variedades de trigo, presencia de translocaciones con centeno

En el **Cuadro 3** se indican las variantes alélicas para los *loci* gliadínicos, y la presencia o ausencia de la translocación con centeno.

De las 140 genotipos analizados, 48 presentaron la translocación con centeno 1BL/1RS. De ellos, 11 correspondieron a variedades argentinas, 13 a paraguayas, 5 a uruguayas, 9 a chilenas y 10 a brasileñas. En el caso de las variedades de Brasil, se encontró que dos de ellas estaban segregando para presencia/ausencia de la translocación 1BL/1RS. Otra variedad brasileña (entrada 121) presentó la translocación 1AL/1RS.

En el caso de las variedades paraguayas, es notoria la difusión de materiales con la translocación con centeno, ya que del total de 14 variedades participantes, solamente una (entrada 55) no presentaba dicha translocación.

Del total de entradas analizadas, nueve fueron heterogéneas, segregando para diferentes composiciones gliadínicas o para presencia/ausencia de translocación. En los materiales argentinos participantes, se encontró que algunas variedades no presentan la composición que se esperaría, comparando con estudios anteriores realizados sobre germoplasma conservado en el Banco Base de Castelar (**Cuadro 4**). En algunos casos, los materiales difirieron no solamente en la composición de gliadinas, sino también para gluteninas. La falta de caracterización de las variantes alélicas para proteínas de reserva presentes en una variedad al momento de su inscripción, llevan al posterior problema de encontrar germoplasma de una variedad determinada que difiera en sus variantes alélicas, sin poder determinar cuál sería la composición original.

Cuadro 3 - Composición de gliadinas y presencia/ausencia de translocaciones con centeno

Entrada	Origen	1BL/1RS	1AL/1RS	Gli D1	Gli B1	Observaciones
1	Arg.	si	no	CS	no	
2	Arg.	no	no	CNN	0	distinto a lo esperado
3	Arg.	no	no	CNN	f	
4	Arg.	no	no	CS	d	
5	Arg.	no	no	CNN	b	distinto a lo esperado
6	Arg.	si	no	CS	no	
7	Arg.	no	no	CS	р	
8	Arg.	si	no	CS	no	
9	Arg.	si	no	CS	no	
10	Arg.	no	no	CS	р	
11	Arg.	si	no	CNN	no	
12	Arg.	si	no	CS	no	
13	Arg.	no	no	CNN	b	
14	Arg.	si	no	CNN	no	
15	Arg.	no	no	CS	k	
16	Arg.	no	no	CS, CNN	d	segreg. Gli-A1 y Gli-D1
17	Arg.	si	no	CS	no	
18	Arg.	no	no	CS	d	
19	Arg.	no	no	CS	b	
20	Arg.	no	no	CNN	S	
21	Arg.	no	no	CS	b	distinto a lo esperado
22	Arg.	no	no	CS	h	
23	Arg.	no	no	CS	d	
24	Arg.	no	no	CS	b	
25	Arg.	no	no	CS	b	
26	Arg.	no	no	CS	р	

27 A 28 A 29 A 30 A	rg.	no	no	CS	Gli B1	Observaciones
29 A 30 A					d	
30 A	ra	no	no	CNN	0	
	irg.	no	no	CS	i	
31 A	arg.	si	no no	CS CS	no b	
	arg.	no si	no no	CS	no	
	irg.	no	no	CS	b	
	irg.	no	no	CS	d	
35 A	irg.	no	no	CS	d	
	irg.	no	no	CS	f	
		no	no	CS	d	
	Arg.	si no	no no	CS CS	no b	
	arg.	no	no	CS	b	
	arag.	SÍ	no	CS	no	
	arag.	SÍ	no	CS	no	
	rag.	SÍ	no	CS	no	
	arag.	SÍ	no	CS	no	
	irag.	SÍ	no	CS	no	
	arag. arag.	SÍ SÍ	no no	CS CS	no no	
	irag. irag.	SÍ	no no	CS	no no	
	arag.	SÍ	no	CS	no	
	rag.	SÍ	no	CS	no	
	nrag.	SÍ	no	CS	no	
55 Pa	arag.	no	no	CS	g	
	arag.	SÍ	no	CS	no	
	irag.	SÍ	no	CS	no	
	rug. rug.	no no	no no	CS CS	g k	
60 U	rug.	no no	no no	CS	k, b	
	rug.	SÍ	no	CS	no	
	rug.	no	no	CS	е	
63 U	rug.	no	no	CS	b	
	rug.	SÍ	no	CS	no	
	rug.	no of	no	CS	p	
	rug. rug.	sí no	no no	CS CNN	no d	
	rug.	no	no no	CS	b	
	rug.	SÍ	no	CS	no	
70 U	rug.	no	no	CS	k	
	rug.	SÍ	no	CS	no	
	rug.	no	no	CS	b	
	rug.	no no	no	CS	b	
		no no	no no	CS CS	p p	
		no	no	CS	р	
77 U		no	no	CS	k	
78 U	rug.	no	no	CS	b	
		no	SÌ	CS	е	
		no	no	CS	k	
	hile hile	SÍ SÍ	no no	CS CS	no no	
		no	no no	CS	no k	
		no	no	CS	d	
85 C	hile	no	no	CS	f,k	
86 C	hile	no	no	CS	d	
		no	no	CNN	d	
		no	no	CS	b	
		no no	no no	CS CS	b	
		no no	no no	CNN	o d	
		no	no	CS	b	
		no	no	CS	d	

Entrada	Origen	1BL/1RS	1AL/1RS	Gli D1	Gli B1	Observaciones
94	Chile	no	no	CS	d	
95	Chile	SÍ	no	CS	no	
96	Chile	no	no	CS	d, b	
97	Chile	SÍ	no	CS	no	
98	Chile	no	no	CS	d, k	
99	Chile	no	no	CS	d, b	
100	Chile	SÍ	no	CS	no	
101	Chile	SÍ	no	CS	no	
102	Chile	no	no	CS	b	
103	Chile	no	no	CNN	d	
104	Chile	no	no	CS, CNN	b, d	
105	Chile	SÍ	no	CS	no	
106	Chile	no	no	CS	b	
107	Chile	no	no	CS	k	
108	Chile	no	no	CNN	d	
109	Chile	no	no	CS	d	
110	Chile	no	no	CS	k	
111	Chile	SÍ	no	CS	no	
112	Chile	no	no	CS	b	
113	Chile	no	no	CS	b	
114	Chile	no	no	CS	d	
115	Chile	SÍ	no	CS	no	
116	Brasil	no	no	CS	b	
117	Brasil	no	no	CS	b	
118	Brasil	no	no	CS	b	
119	Brasil	no	no	CS	g	
120	Brasil	no	no	CS	d	
121	Brasil	no	SÍ	CNN	е	
122	Brasil	no	no	CS	d	
123	Brasil	no	no	CS	g	
124	Brasil	SÍ	no	CS CS	no	
125	Brasil	no	no		d	
126	Brasil	no	no	CS	S	
127	Brasil	no	no	CS	b	
128	Brasil	sí, no	no	CS	d, no	
129	Brasil	no	no	CS	k	
130	Brasil	no	no	CS	d	
131	Brasil	SÍ	no	CS	no	
132	Brasil	SÍ	no	CS	no	
133	Brasil	no	no	CS	k	
134	Brasil	SÍ	no	CS	no	
135	Brasil	no	no	CS	0	
136	Brasil	no	no	CS	b	
137	Brasil	SÍ	no	CS	no	
138	Brasil	SÍ	no	CS	no	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
139	Brasil	no	no	CS	d	Segregando diferentes Gli-D1 del tipo CS
140	Brasil	sí, no	no	CS	f, no	una sola semilla con la translocación
141	Brasil	SÍ	no	CS	no	
142	Brasil	no	no	CS	b	
143	Brasil	SÍ	no	CS	no	

Cuadro 4 - Comparación de cultivares según orígenes Castelar y Fontagro

Variedad	Mate	rial Castelar	Mater	rial Fontagro
	Gli-B1	Gli-D1	Gli-B1	Gli-D1
Victoria INTA	d	CS	0	CNN
Marcos Juarez INTA	d	CS	b	CNN
Klein 32	р	CS	S	CNN

1.3. Caracterización molecular de los loci de proteínas de reserva de Gluteninas de bajo peso molecular, Xglu-A3 y gamma-gliadinas Xgli-B1, mediante microsatélites

Gamma-gliadinas Xgli-B1, análisis mediante microsatélites.

Los oligonucleótidos para el microsatélite dentro del *locus* de γ -gliadinas *Xpsp3000* (*XGli-B1*) amplifican un único fragmento (Devos et *al.*, 1995). Este microsatélite presentó un PIC = 0.93 para este conjunto de materiales.

En las variedades analizadas se han detectado once alelos, cuyo tamaño varía entre 213 pb y 270 pb correspondiente a la variación de 7 a 26 repeticiones del triplete CAA y un alelo nulo. En el **Cuadro 5** se indican en pares de bases los alelos correspondientes a las variedades analizadas en este proyecto.

Treinta y seis variedades no amplificaron inicialmente. Estas variedades fueron analizadas citológicamente y así se corroboró la translocación de centeno 1BL/1RS. Otras variedades, que inicialmente habían amplificado presentando patrones confusos, demostraron tener la translocación con centeno cuando fueron analizadas electroforéticamente.

En dos variedades se detectó la presencia de más de un alelo (se indican en el **Cuadro 5** con el símbolo "+"). Estas variedades son los cultivares INIA CHIMANGO perteneciente a Uruguay y KALIPAN INIA QUI 889-94 perteneciente a Chile.

Cuadro 5 - Alelos del *locus Xpsp3000*, correspondiente al *locus* de gamma gliadinas *XGIi-B1*

Entrada	IDENTIFICACION	codMTX	FINAL
1	LAP 4094	1ARG	nulo
2	VICTORIA INTA	2ARG	246
3	KLEIN IMPACTO	3ARG	237
4	PROINTA CALIDAD	4ARG	270
5	MARCOS JUÁREZ INTA `	5ARG	216
6	J97031 = KLT"S"/4/COW"S"/3/NAD//BB/INIA/5/RTNI	6ARG	nulo
7	BUCK NAPOSTÁ	7ARG	252
8	PROINTA GRANAR	8ARG	nulo
9	PROINTA REAL	9ARG	nulo
10	PROINTA ALAZÁN	10ARG	252
11	PROINTA GUAZÚ	11ARG	nulo
12	EZORZAL//ND376*3/GIZA74003/3/BPUC	12ARG	nulo
13	BUCK PONCHO	13ARG	213
14	BUCK CHARRÚA	14ARG	nulo
15	COOPERACIÓN LIQUEN	15ARG	246
16	LA PAZ INTA	16ARG	264
17	PROINTA PINCÉN	17ARG	nulo
18	PROINTA HUEN PAN	18ARG	270
19	PROINTA COLIBRÍ	19ARG	213
20	KLEIN 32	20ARG	216
21	PROINTA CINCO CERROS	21ARG	213
22	FONTEZUELA INTA	22ARG	243
23	PROINTA IMPERIAL	23ARG	270
24	BUCK CAUDILLO	24ARG	213
25	BUCK ARRIERO	25ARG	213
26	TEZANOS PINTO PRECOZ	26ARG	252
27	PROINTA HURÓN	27ARG	270
28	PROINTA CAUQUÉN	28ARG	246
29	KLEIN COBRE	29ARG	243

Entrada	IDENTIFICACION	codMTX	FINAL
30	DON ERNESTO INTA	30ARG	nulo
31	BUCK PANADERO	31ARG	213
	PROINTA AMANECER	32ARG	nulo
33	KLEIN ESTRELLA	33ARG	213
34	KLEIN ORIÓN	34ARG	270
35	BUCK PRONTO	35ARG	270
36	KLEIN TOLEDO	36ARG	237
37	BUCK YATASTO	37ARG	261
38	LAP 3363	38ARG	246
39	LAP 3495	39ARG	213
40	LAP 3679	40ARG	213
41	ITAPÚA 40	1PY	nulo
42	IAN-8	2PY	nulo
43	CORDILLERA-3	3PY	nulo
44	IAN-9	4PY	nulo
45	E-91081	5PY	nulo
46	E-91079	6PY	nulo
47	E-91075	7PY	nulo
	E-94085	11PY	nulo
	C-91181	12PY	nulo
	E-92225	13PY	nulo
	C-93087	14PY	nulo
	C-93472	15PY	234
	E-96052	16PY	nulo
	E-92227	17PY	nulo
	ESTANZUELA TARARIRAS	1UY	237
	ESTANZUELA DORADO	2UY	246
	ESTANZUELA HORNERO	3UY	na
	ESTANZUELA CARDENAL	4UY	nulo
	ESTANZUELA CALANDRIA	5UY	237
	ESTANZUELA FEDERAL	6UY	na
	ESTANZUELA PELÓN 90	7UY	nulo
	ESTANZUELA HALCÓN	8UY	252
	INIA MIRLO	9UY	nulo
	INIA CHIMANGO	10UY	264 + 237
	LE 2210-INIA TIJERETA	11UY	237
	INIA BOYERO	12UY	nulo
	LE 2193-INIA CABURÉ	13UY	246
	LE 2233-INIA BÚHO	14UY	nulo
	LE 2245-INIA GORRIÓN	15UY	234
	LE 2249-INIA CHURRINCHE	16UY	213
	LE 2240	17UY	237
	LE 2232	18UY	252
	LE 2278	19UY	252
	LE 2281	20UY	246
	LE 2282	21UY	216
	LE 2283	22UY	237
	HUAÑIL INIA 1786	1CL	246
	HUAYUN INIA 2285	2CL	nulo
	MILLALEU INIA 48	3CL	nulo
	CIKO INIA P002/97	4CL	246
	DOMO INIA 2841	5CL	na
	KALIPAN INIA QUI 889-94	6CL	246+237
	TAMOI INIA P106/99	7CL	270
	NAOFEN INIA 49	8CL	270
	COYAN INIA 2064	9CL	213
	MAQUI INIA 64	10CL	216
	OPALA	11CL	246
	P030/97	12CL	270
	042/97	13CL	237
	P102/96	14CL	270
	P150/96	15CL	270
	PIA P183/98	16CL	nulo
95	FIM F 103/70	IOCL	HUIO

Entrada I	DENTIFICACION	codMTX	FINAL
96 F	2139/98	17CL	234
97 F	P110/98	18CL	nulo
98 1	191	19CL	246
99 F	2065/96	20CL	216
100 F	2007/98	21CL	nulo
101 7	OROPI P105/99	22CL	270
102 7	'9	23CL	234
103 F	P034/97	24CL	270
104 F	2035/97	25CL	270
105 F	P041/97	26CL	nulo
106 F	2052/98	27CL	213
107 8	30	28CL	246
108 1	763	29CL	270
109 2	916	30CL	246
110 2	917	31CL	246
111 F	2108/98	32CL	nulo
112 1	774	33CL	213
113 F	2088/98	34CL	213
114 2	321	35CL	270
115 F	2193/98	36CL	nulo
116 F	RONTANA	1BR	216
	AC 5-MARINGA	2BR	234
118 (CEP 24	3BR	213
	CEP 27	4BR	234
120 F	UNDACEP 29	5BR	270
121 E	MB 16	6BR	237
122 E	MB 22	7BR	270
123 E	MB 27	8BR	234
124 E	MB 40	9BR	na
125 E	MB 42	10BR	270
126 7	RIGO BR 17	11BR	213
	RIGO BR 18	12BR	213
128 7	RIGO BR 26	13BR	237
	RIGO BR 33	14BR	246
130 7	RIGO BR 40	15BR	270
131 E	BRS 49	16BR	nulo
	BRS 119	17BR	na
133 l	APAR 17	18BR	246
134 l	APAR 28	19BR	nulo
135 I	APAR 29	20BR	246
	APAR 53	21BR	216
	APAR 78	22BR	na
138 I	PR 84	23BR	na
139 (OC 16	24BR	270
140 (OC 21	25BR	237
	OC 22	26BR	nulo
142 (27BR	234
143 7	RIGO BR 23	28BR	nulo

na: no hubo amplificación

En algunos cultivares argentinos, se encontraron divergencias entre los resultados obtenidos con la semilla usada en este trabajo y resultados obtenidos anteriormente. Estas diferencias se indican en el **Cuadro 6**.

Cuadro 6 - Cultivares que presentaron divergencia para el *locus Xpsp3000* con respecto al dato disponible para dichos cultivares conservados en el Banco Base Castelar

Cultivar	Material INTA (Banco Base)	Material Fontagro
Marcos Juárez INTA	270	216
Klein32	252	216
Victoria INTA	270	246
La Paz Inta	270	264

Gluteninas de bajo peso molecular, Xglu-A1, mediante microsatélites.

Se analizaron las variantes alélicas del *locus* de las proteínas de reserva Gluteninas de bajo peso molecular (LMW-GS) el microsatélite, *Xpsp2999*. Este microsatélite se halla ubicado dentro del *locus* del gen de las gluteninas de bajo peso molecular (*Glu-A3*) en el brazo corto del cromosoma 1A. Los oligonucleótidos para el microsatélite dentro del *locus* de Gluteninas de Bajo peso molecular amplifican dos fragmentos (Devos et *al.*, 1995).

Este microsatélite presentó un PIC = 0.94.

En las variedades analizadas se han detectado trece alelos, cuyo tamaño varía entre 133 pb y 157 pb. En el **Cuadro 7** se indican en pares de bases los alelos correspondientes a las variedades analizadas en este proyecto.

Sólo una muestra, correspondiente a Uruguay, LE 2282, no presentó amplificación.

En 1 cultivar, P150/96 perteneciente a Chile, se detectó la presencia de más de un alelo (se indica en el **Cuadro 7** como +).

Cuadro 7 - Alelos del *locus Xpsp2999*, correspondiente al *locus* de gluteninas de bajo peso molecular *XGlu-A3*

Ent	IDENTIFICACIÓN	codMTX	FINAL
1	LAP 4094	1ARG	145/148
2	VICTORIA INTA	2ARG	139/142
3	KLEIN IMPACTO	3ARG	133/142
4	PROINTA CALIDAD	4ARG	133/142
5	MARCOS JUÁREZ INTA	5ARG	139/142
6	J97031 = KLT"S"/4/COW"S"/3/NAD//BB/INIA/5/RTNI	6ARG	142/142
7	BUCK NAPOSTÁ	7ARG	133/142
8	PROINTA GRANAR	8ARG	133/142
9	PROINTA REAL	9ARG	142/145
10	PROINTA ALAZÁN	10ARG	145/151
11	PROINTA GUAZÚ	11ARG	133/142
12	EZORZAL//ND376*3/GIZA74003/3/BPUC	12ARG	139/142
13	BUCK PONCHO	13ARG	145/148
14	BUCK CHARRÚA	14ARG	148/154
15	COOPERACIÓN LIQUEN	15ARG	133/142
16	LA PAZ INTA	16ARG	139/142
17	PROINTA PINCÉN	17ARG	145/148
18	PROINTA HUEN PAN	18ARG	139/142
19	PROINTA COLIBRÍ	19ARG	139/142
20	KLEIN 32	20ARG	133/142
21	PROINTA CINCO CERROS	21ARG	139/142
22	FONTEZUELA INTA	22ARG	145/151
23	PROINTA IMPERIAL	23ARG	133/142
24	BUCK CAUDILLO	24ARG	145/148

Ent	IDENTIFICACIÓN	codMTX	FINAL
25	BUCK ARRIERO	25ARG	133/142
26	TEZANOS PINTO PRECOZ	26ARG	133/142
27	PROINTA HURÓN	27ARG	133/142
28	PROINTA CAUQUÉN	28ARG	145/151
29	KLEIN COBRE	29ARG	148/157
30	DON ERNESTO INTA	30ARG	133/142
31	BUCK PANADERO	31ARG	148/154
32	PROINTA AMANECER	32ARG	145/148
33	KLEIN ESTRELLA	33ARG	145/148
34	KLEIN ORIÓN	34ARG	139/142
	BUCK PRONTO	35ARG	139/142
	KLEIN TOLEDO	36ARG	148/151
	BUCK YATASTO	37ARG	133/142
	LAP 3363	38ARG	145/151
	LAP 3495	39ARG	139/142
	LAP 3679	40ARG	145/148
	ITAPÚA 40	1PY	133/142
	IAN-8 CORDILLERA-3	2PY	133/142
		3PY	133/142
	IAN-9	4PY	142/142
	E-91081	5PY	133/142
	E-91079	6PY	142/145
	E-91075	7PY	142/145
	E-91081	8PY	142/145
	E-91079	9PY	142/145
	E-91075	10PY	142/145
51	E-94085	11PY	142/145
52	C-91181	12PY	145/148
53	E-92225	13PY	145/148
54	C-93087	14PY	142/145
55	C-93472	15PY	133/142
56	E-96052	16PY	133/142
57	E-92227	17PY	133/142
58	ESTANZUELA TARARIRAS	1UY	133/142
59	ESTANZUELA DORADO	2UY	133/142
	ESTANZUELA HORNERO	3UY	133/142
	ESTANZUELA CARDENAL	4UY	133/142
	ESTANZUELA CALANDRIA	5UY	133/142
	ESTANZUELA FEDERAL	6UY	133/142
	ESTANZUELA PELÓN 90	7UY	142/145
	ESTANZUELA HALCÓN	8UY	148/151
	INIA MIRLO	9UY	133/142
	INIA CHIMANGO	10UY	133/142
	LE 2210-INIA TIJERETA	11UY	133/142
	INIA BOYERO	110Y	133/142
			133/142
	LE 2193-INIA CABURÉ	13UY	
	LE 2233-INIA BÚHO	14UY	133/142
	LE 2245-INIA GORRIÓN	15UY	133/142
	LE 2249-INIA CHURRINCHE	16UY	133/142
	LE 2240	17UY	133/142
	LE 2232	18UY	148/151
	LE 2278	19UY	151/151
	LE 2281	20UY	151/151
	LE 2282	21UY	na
	LE 2283	22UY	139/142
	HUAÑIL INIA 1786	1CL	142/142
81	HUAYUN INIA 2285	2CL	133/142
82	MILLALEU INIA 48	3CL	133/142
83	CIKO INIA P002/97	4CL	142/142
	DOMO INIA 2841	5CL	142/142
	KALIPAN INIA QUI 889-94	6CL	139/142
	TAMOI INIA P106/99	7CL	139/142
	NAOFEN INIA 49	8CL	142/142

Ent	IDENTIFICACIÓN	codMTX	FINAL
88	COYAN INIA 2064	9CL	142/142
89	MAQUI INIA 64	10CL	142/145
90	OPALA	11CL	139/142
91	P030/97	12CL	145/151
92	042/97	13CL	145/151
93	P102/96	14CL	145/151
94	P150/96	15CL	133/142+148/151
95	PIA P183/98	16CL	133/142
96	P139/98	17CL	139/142
97	P110/98	18CL	133/142
98	1191	19CL	133/142
99	P065/96	20CL	133/142
100	P007/98	21CL	133/142
101	TOROPI P105/99	22CL	142/145
102	79	23CL	145/154
103	P034/97	24CL	145/151
104	P035/97	25CL	145/151
105	P041/97	26CL	142/145
	P052/98	27CL	139/142
107	80	28CL	142/142
108	1763	29CL	145/151
109	2916	30CL	145/151
110	2917	31CL	142/142
111	P108/98	32CL	145/151
112	1774	33CL	142/151
113	P088/98	34CL	145/148
	2321	35CL	142/142
	P193/98	36CL	133/142
116	FRONTANA	1BR	133/142
	IAC 5-MARINGA	2BR	148/151
	CEP 24	3BR	142/145
	CEP 27	4BR	145/148
	FUNDACEP 29	5BR	145/151
	EMB 16	6BR	133/142
	EMB 22	7BR	142/148
	EMB 27	8BR	145/154
	EMB 40	9BR	145/154
	EMB 42	10BR	142/148
	TRIGO BR 17	11BR	133/142
	TRIGO BR 18	12BR	145/148
	TRIGO BR 26	13BR	133/142
	TRIGO BR 33	14BR	145/151
	TRIGO BR 40	15BR	142/142
	BRS 49	16BR	142/142
	BRS 119	17BR	142/145
	IAPAR 17	18BR	139/142
	IAPAR 28	19BR	133/142
	IAPAR 29	20BR	142/142
	IAPAR 53	21BR	148/151
	IAPAR 78	22BR	133/142
	IPR 84	23BR	142/145
	OC 16	24BR	142/145
	OC 21	25BR	142/145
	OC 22	26BR	133/142
	OR 1	27BR	139/142
143	TRIGO BR 23	28BR	133/142

Se encontraron algunas disidencias con los resultados obtenidos con las semillas de algunos cultivares argentinos con resultados obtenidos con anterioridad en nuestros trabajos. Estos se indican en el **Cuadro 8.**

Cuadro 8 - Diferencias observadas en variedades argentinas anteriormente analizadas en Castelar (Banco Base) en *locus Xpsp2999*

Cultivar	Material INTA (Banco Base)	Material Fontagro
Marcos Juárez INTA	145/151	139/142
Klein Impacto	148/157	133/142
Prointa Pincén	139/142	145/148
La Paz Inta	133/142	139/142
ProINTA Real	145/151	133/142

1.4. Microsatélites asociados con brotado pre-cosecha

Aunque se utilizó como referencia el material pedido a los autores del trabajo citado (Roy et al. 1999) los resultados que el mismo muestra no son claros y no es posible la identificación de un patrón asociado con brotado.

1.5. Caracterización molecular de los loci Pina-D1 y Pinb-D1, relacionados con textura de grano

La caracterización de los genes *Pina-D1* y *Pinb-D1* se realizó en los 51 genotipos selectos, tanto en Argentina como en Chile. Ambos laboratorios coincidieron en los resultados obtenidos para 43 de dichos genotipos (**Cuadro 9**), observándose que todos resultaron genotípicamente duros. La textura dura se explica en 19 de las entradas por la presencia de la deleción en *Pina-D1* (alelo *Pina-D1b*), en tanto que las 24 restantes deben su textura dura a la presencia de la mutación glicina-serina en la puroindolina B (alelo *Pinb-D1b*). La poca variabilidad observada para estos *loci* en esta caracterización puede compararse con la observada en evaluaciones llevadas a cabo en colecciones de Europa y USA, en donde estos alelos, *Pina-D1b* y *Pinb-D1b*, mostraron ser los de mayor difusión.

El **Cuadro 10** presenta los datos correspondientes a ambos laboratorios para aquellos 8 genotipos en los cuales se observaron diferencias en los resultados obtenidos. En el caso de Victoria INTA (entrada 2), en el laboratorio de Argentina se observó heterogeneidad en *Pinb-D1* (el marcador para *Pina-D1* es dominante, por lo tanto la presencia del alelo nulo no es posible de detectar en este caso), por lo cual podría especularse que la diferencia respecto a lo informado por Chile, podría deberse a que las muestras tomadas en cada laboratorio para realizar la extracción de ADN no coincidieron en la representatividad de los genotipos presentes. Para el resto de los genotipos, es necesario repetir los análisis en cada laboratorio para descartar que las diferencias se deban a cualquier error operativo o de manipulación del material. Si las diferencias se confirmaran, sería conveniente realizar un intercambio de muestras entre laboratorios para verificar que las condiciones experimentales no hayan afectado los resultados obtenidos y que la posibilidad de haber recibido muestras distintas bajo el mismo rótulo sea la que deba considerarse para explicar las diferencias observadas.

De todas maneras, la notablemente alta proporción de genotipos duros, respecto a los blandos, presentes en las líneas y cultivares difundidos en la región del Cono Sur muestra, por un lado, la preponderancia que la industria panaderas ha alcanzado en la región, y por otro, la falta de diversificación y tipificación en la producción de trigo, tendiente a satisfacer demandas industriales destinadas a la manufactura de otros productos harineros.

Cuadro 9 - Caracterización genotípica de la textura de grano, mediante el análisis con marcadores moleculares para los *loci Pina-D1* y *Pinb-D1*.

Gen.	ORIGEN	Pina-D1	Pinb-D1	Clasificación genotípica
6.	ARG.	Pina-D1a	Pinb-D1b	Duro
9.	ARG.	Pina-D1b	Pinb-D1a	Duro
10.	ARG.	Pina-D1a	Pinb-D1b	Duro
11.	ARG.	Pina-D1b	Pinb-D1a	Duro
13.	ARG.	Pina-D1a	Pinb-D1b	Duro
19.	ARG.	Pina-D1b	Pinb-D1a	Duro
20.	ARG.	Pina-D1a	Pinb-D1b	Duro
21.	ARG.	Pina-D1b	Pinb-D1a	Duro
25.	ARG.	Pina-D1a	Pinb-D1b	Duro
28.	ARG.	Pina-D1a	Pinb-D1b	Duro
30.	ARG.	Pina-D1a	Pinb-D1b	Duro
31.	ARG.	Pina-D1a	Pinb-D1b	Duro
32.	ARG.	Pina-D1a	Pinb-D1b	Duro
33.	ARG.	Pina-D1a	Pinb-D1b	Duro
35.	ARG.	Pina-D1b	Pinb-D1a	Duro
36.	ARG.	Pina-D1a	Pinb-D1b	Duro
41.	PARAG.	Pina-D1b	Pinb-D1a	Duro
42.	PARAG.	Pina-D1a	Pinb-D1b	Duro
44.	PARAG.	Pina-D1b	Pinb-D1a	Duro
47.	PARAG.	Pina-D1a	Pinb-D1b	Duro
52.	PARAG.	Pina-D1a	Pinb-D1b	Duro
57.	PARAG.	Pina-D1b	Pinb-D1a	Duro
61.	URUG.	Pina-D1b	Pinb-D1a	Duro
65.	URUG.	Pina-D1a	Pinb-D1b	Duro
68.	URUG.	Pina-D1a	Pinb-D1b	Duro
69.	URUG.	Pina-D1a	Pinb-D1b	Duro
73.	URUG.	Pina-D1a	Pinb-D1b	Duro
74	URUG.	Pina-D1a	Pinb-D1b	Duro
79.	URUG.	Pina-D1b	Pinb-D1a	Duro
80.	CHILE	Pina-D1b	Pinb-D1a	Duro
81.	CHILE	Pina-D1b	Pinb-D1a	Duro
83.	CHILE	Pina-D1b	Pinb-D1a	Duro
85.	CHILE	Pina-D1a	Pinb-D1b	Duro
86.	CHILE	Pina-D1b	Pinb-D1a	Duro
87.	CHILE	Pina-D1a	Pinb-D1b	Duro
89.	CHILE	Pina-D1a	Pinb-D1b	Duro
90.	CHILE	Pina-D1b	Pinb-D1a	Duro
91.	CHILE	Pina-D1a	Pinb-D1b	Duro
92.	CHILE	Pina-D1b	Pinb-D1a	Duro
93.	CHILE	Pina-D1b	Pinb-D1a	Duro
95.	CHILE	Pina-D1b	Pinb-D1a	Duro
96.	CHILE	Pina-D1b	Pinb-D1a	Duro
103.	CHILE	Pina-D1a	Pinb-D1b	Duro

Cuadro 10 - Datos correspondientes a los genotipos para los cuales hubo diferencias entre los laboratorios de Argentina y Chile, en la caracterización genotípica de la textura de grano, mediante el análisis con marcadores moleculares para los *loci Pina-D1* y *Pinb-D1*.

Gen.	ORIGEN	ARGE	NTINA	СН	ILE
		Pina-D1	Pinb-D1	Pina-D1	Pinb-D1
2.	ARG.	Pina-D1b	Pinb-D1a/ Pinb-D1b	Pina-D1a	Pinb-D1b
22.	ARG.	Pina-D1a	Pinb-D1a	Pina-D1a	Pinb-D1b
24.	ARG.	Pina-D1a	Pinb-D1b	Pina-D1a	Pinb-D1a
63.	URUG.	Pina-D1b	Pinb-D1a	Pina-D1a	Pinb-D1b
70.	URUG.	Pina-D1a	Pinb-D1a	Pina-D1a	Pinb-D1b
72.	URUG.	Pina-D1a	Pinb-D1b	Pina-D1a	Pinb-D1a
102.	CHILE	Pina-D1a	Pinb-D1a	Pina-D1a	Pinb-D1b
105.	CHILE	Pina-D1b	Pinb-D1a	Pina-D1a	Pinb-D1b

- 2. Determinación de factores reológicos y de procesamiento relacionados con la calidad industrial y definición de parámetros relevantes para la eficiente selección de germoplasma
- 2.1. Caracterización del germoplasma según parámetros fisicoquímicos, factores reológicos y de procesamiento en distintos ambientes

Los resultados son presentados por ambiente en los **Cuadros 11-16**. Los valores de los principales parámetros están presentados por parámetro en los **Cuadros 17-22**.

Se observa una amplia variabilidad entre genotipos y entre ambientes. Por ejemplo el W de alveograma (ALW), el parámetro más utilizado en la industria del Cono Sur para definir la calidad de un trigo o una partida de harina, varió desde 46 a 1014 j/10000. Además, el promedio de los 51 genotipos en los ambientes varió desde 232 (Ambiente 1) a 549 (Ambiente 7), mientras que el promedio de los genotipos fue desde 132 (Entrada 105) a 595 (Entrada 36). Cabe destacar que hubieron genotipos de los cuatro países que se tuvieron valores de alta calidad promedio en todos los ambientes (W mayores a 350 en promedio de ambientes).

Cuadro 11 - Resultados de análisis fisicoquímicos

AMB	ENT	PRG	PRH	GS	GH	IG	SDSH	PH	PKG	DMX	DCH	PSI
1	2	12.5		10.1	28.2	100		82.6	22			
1	6											
1	9	12.0		9.2	26.1	100		79.9	29			
1	10	12.8		10.6	30.2	98		83.5	27			
1	11	12.6		11.0	31.2	94		80.8	32			
1	13	12.7		10.3	28.6	99		81.7	37			
1	19	11.2		8.4	23.7	97		80.4	26			
1	20	12.8		9.9	27.9	17		84.9	42			
1	21	12.0		10.1	28.6	98		78.8	34			
1	22	14.6		11.1	31.2	98		82.6	30			
1	24	12.8		10.0	29.1	93		83.5	33			
1	25	12.4		9.7	27.4	98		83.3	37			
1	28	13.0		10.5	29.9	88		82.2	29			
1	30	11.6		9.5	27.1	93		81.7	22			
1	31	12.5		10.0	28.1	98		82.4	38			
1	32	12.4		9.9	28.6	82		81.1	30			
1	33	11.5		9.5	27.2	94		80.4	33			
1	35	11.3		9.0	25.5	100		82.2	36			
1	36	13.6		10.9	31.1	94		82.6	37			
1	41	11.2		9.0	25.9	73		83.1	21			
1	42	11.5		8.9	25.6	70		82.0	22			
1	44	11.3		9.3	26.3	82		82.2	20			
1	47	12.5		10.7	29.3	72		80.8	24			
1	52	11.5		9.4	26.2	87		82.2	28			
1	57	11.3		9.0	25.7	69		78.6	33			
1	61	10.9		8.3	23.5	90		82.6	22			
1	63	11.1		8.4	23.1	100		82.4	33			
1	65	12.1		9.6	28.1	90		80.2	39			
1	68	11.9		9.5	26.0	97		82.6	35			
1	69	11.7		9.0	25.7	93		81.5	28			
1	70	10.8		7.4	20.8	98		81.3	27			
1	72	12.6		9.6	27.2	94		85.1	32			
1	73	11.3		8.9	24.8	100		82.2	30			
1	74	14.5		12.0	34.8	90		80.8	39			
1	79	11.9		9.3	26.0	94		78.2	29			
1	80	11.5		9.4	27.2	67		75.9	26			
1	81	10.8		8.0	23.3	90		79.9	18			
1	83	11.2		8.9	25.1	98		79.9	29			
1	85	11.7		9.1	25.4	98		80.8	37			
1	86	11.0		8.3	23.5	87		78.6	33			
1	87	12.9		12.0	31.6	54		79.0	36			
1	89	11.3		8.2	22.9	93		69.0	24		- 	
1	90	11.9		9.6	26.9	93		79.0	19			
1	91	14.6		14.0	36.2	72	•	79.7	26		1	
1	92	11.8		9.7	26.0	94	•	82.2	33		1	
1	93	11.6		9.1	24.8	48		69.7	24		 	
1	95	11.0		9.3	25.3	51		79.9	21		- 1	
1	96	14.0	1	12.0	33.2	54		79.5	20			
1	102	15.8		14.0	41.9	46		77.0	41	1		·
1	103	14.0		14.0	36.1	70	•	80.4	29			
1	105	14.2		14.0	38.1	53		80.4	33	1		
2	2	15.4	T T	12.4	33.9	99		73.2	25			
2	6	10.7	•	12.7	33.7	,,		13.2	20	•	<u> </u>	
2	9	15.1	-	12.6	36.1	97	•	72.3	30	•	+	
2	10	14.1	-	12.1	33.7	100	•	71.4	25	+	+	
2	11	15.0	•	13.6	38.2	96	•	71.4	34		+	
2	13	15.3	•	12.9	35.1	100	•	76.4	30	•	+	
2	19	14.7	•	12.9	35.1	100	•	68.3	28	•	+	
2	20	15.6	•	15.7	41.6	52		70.3	27		+	
2	21	14.1	•	11.7	32.2	100		68.5	24	•	+	
2	22	15.3	•	12.6	34.7	100		75.2	26		+	
		10.0		12.0	34.7	100		13.2	28			

AMB	ENT	PRG	PRH	GS	GH	IG	SDSH	PH	PKG	DMX	DCH	PSI
2	25	14.4		13.0	36.2	97		69.9	24			
2	28	14.6		12.5	33.6	100		70.8	28			
2	30	14.2		11.3	31.8	100		75.9	28			
2	31	15.1		12.7	34.5	99		74.3	28			
2	32	14.3		11.7	32.4	98		68.7	28		- +	
2	33 35	14.1 15.2		12.2 13.2	34.4 35.8	97 99		69.0 71.4	28 32	•		
2	36	15.2		13.2	39.2	99		71.4	33		•	
2	41	13.7		12.2	35.2	82	•	73.7	30	•	-	•
2	42	14.0	 	11.3	30.8	99	·	75.0	26		 	·
2	44	14.1		13.5	37.8	70		71.2	26			
2	47	14.0		12.4	35.2	70		74.6	30			
2	52	15.3		14.7	37.3	53		73.7	30			
2	57	14.0		11.9	32.9	81		74.1	28			
2	61	13.7		11.3	32.4	77		69.7	26	•	- +	
2	63 65	14.0 15.5		11.5 13.5	32.1 38.1	95 97		69.4 67.8	24 22		•	
2	68	15.5		13.0	36.5	97		73.9	29	•	•	
2	69	14.7		12.0	34.5	94		75.0	30	•		
2	70	14.5		13.7	36.4	69		69.9	27			·
2	72											
2	73	14.7		12.9	36.2	83		73.7	29			
2	74	15.4		13.9	37.7	97		73.7	30			
2	79	14.1		12.7	35.5	97		70.5	28			
2	80	14.3		12.4	33.0	52		68.5	34			
2	81	13.6		10.4 12.9	27.1 35.8	66		69.9 68.3	24 33			
2	83 85	13.9 16.1		14.6	40.0	46 57		08.3	16	•	•	
2	86	13.2		12.7	32.1	80		72.3	25	•		•
2	87	14.5		14.6	39.6	52		69.7	28			
2	89	13.4		11.4	31.5	85		60.2	25			
2	90	13.2		15.3	41.9	53		68.3	22			
2	91	16.6		13.1	37.6	62		64.2	20			
2	92	14.2		16.9	45.5	52		71.4	28			
2	93 95	13.9 13.8		12.3 11.9	35.1 33.2	76 68		64.2 66.0	26 24	•		
2	95	15.6		13.6	38.9	54		70.5	26	•	•	
2	102	15.7	•	16.2	46.4	46	•	69.3	30	•	-	•
2	103	15.0		14.9	41.0	70		65.6	22			
2	105	15.8		16.4	46.8	53		72.3	32			
3	2	14.8		11.9	32.0	100		67.8	28			
3	6	14.9		13.9	40.0	95		66.9	33			
3	9	13.9		11.6	32.1	99		76.8	36			
3	10	13.7		12.3	34.1	100		72.8	26			
3	11 13	14.5 15.1		12.6 12.8	34.7 32.2	100 100	•	61.0 71.2	29 25		+	
3	19	14.0	•	11.3	32.2	100	•	71.2	26	•	+	•
3	20	15.5		13.0	39.0	44	•	72.8	31		+	•
3	21	13.4		11.4	32.0	99		69.7	28			
3	22	15.3		13.0	36.5	87		79.3	29			
3	24	14.2		12.3	33.0	99	-	71.9	28			
3	25	14.2		11.9	31.4	100		72.5	27			
3	28	13.7		12.1	33.3	98 74		71.8	25		- +	
3	30 31	14.8 14.2		12.7 11.7	36.6 31.4	100		81.3 69.4	34 28		+	
3	32	13.3	-	10.0	28.2	99	•	74.1	28	•	+	
3	33	13.1		10.4	27.6	100		73.2	26		- :	
3	35	14.9		13.0	35.2	98		77.3	36			
3	36	16.6		15.5	45.4	56		74.3	34			
3	41	15.3		13.7	38.9	69		78.4	36			
3	42	14.5		12.3	34.1	93		78.6	36			
3	44	15.1		13.2	37.7	62		79.5	35		-	
3	47 52	15.3 14.8		14.0 12.2	39.0 35.7	74 67		79.3 77.7	36 38		+	
3	57	14.6	-	13.2	38.2	60	•	78.2	29	•	+	
ا ا	JI	14.4	· I	13.4	JU.Z	UU	•	10.2	L 7	•		

AMB	ENT	PRG	PRH	GS	GH	IG	SDSH	PH	PKG	DMX	DCH	PSI
3	61	14.8		10.9	30.9	97		78.6	36			
3	63	13.1		12.6	35.3	74		70.5	25			
3	65	13.4		11.8	31.0	100		73.9	27			
3	68	13.1		10.0	27.4	99		76.1	30			
3	69	15.3		13.7	39.4	66		79.7	35			
3	70 72	14.3 14.3		11.3 11.9	31.3 33.1	98 96	•	71.4 71.9	30 23	•	•	
3	73	14.3		10.9	30.3	90		71.9	28	•	•	
3	74	13.8	•	12.4	34.1	96	•	73.7	27	•	•	
3	79	16.5		14.1	40.0	81		78.6	38			
3	80	14.5		13.0	37.7	69		78.2	44			
3	81	13.9		12.8	34.3	78		79.9	34			
3	83	13.9		14.0	39.4	94		79.7	40			
3	85	16.3		11.3	32.3	65		68.7	23			
3	86	13.3		11.4	31.8	86		80.8	32			
3	87	13.9		13.6	37.9	53		80.4	34			
3	89	13.4		11.0	30.2	93		77.7	36			
3	90 91	14.7 14.4		11.7	33.2	91 81		79.8 67.8	33 24			-
3	91	16.0		13.4 13.6	37.6 40.5	82		78.4	36	•	•	
3	93	15.2		13.8	38.8	87		74.6	39	•	•	-
3	95	16.4	•	14.1	43.4	54	•	76.4	34	•	•	
3	96	18.1		16.5	46.2	64		73.0	24			
3	102	15.1		15.4	42.1	63		68.7	30			
3	103	14.2		15.2	41.4	72		66.0	24			
3	105	16.4		18.8	49.2	51		73.0	32			
4	2	15.2					15.8	80.8			20.0	
4	6	15.2					16.4	84.4			17.0	
4	9	14.8					11.4	84.4			19.6	
4	10	14.7					16.4	84.4			17.4	
4	11	14.4					9.8	84.2			17.9	
4	13 19	14.8 13.7		•			16.0 12.6	85.8 84.6		•	21.5 17.0	
4	20	16.3					17.8	84.1		•	17.0	
4	21	16.9			•	•	15.8	81.1	•	•	17.5	-
4	22	13.5					7.8	84.4			23.6	
4	24	13.7					14.0	84.6			17.1	
4	25	13.5					14.2	85.3			16.5	
4	28	14.1					10.0	85.1			19.5	
4	30	14.6					10.6	86.2			21.0	
4	31	14.3					16.2	84.4			18.7	
4	32	15.5					13.6	84.4			20.3	
4	33	15.9					14.6	83.1			22.6	
4	35 36	15.6 15.3		•			17.0 20.4	84.1 81.3	•	•	23.0	
4	41	16.9			•		14.0	82.6	1	•	23.3 18.0	
4	42	13.0		•	•		10.4	86.4	1	1	20.3	-
4	44	12.8					9.6	84.2		 	18.0	
4	47	11.2					6.4	84.6			16.9	
4	52	11.8					9.4	83.8			25.2	
4	57	13.2					10.0	84.6			17.7	
4	61	13.1					9.4	83.1			17.1	
4	63	12.5					13.0	82.9			19.6	
4	65	13.4					13.2	81.7			18.3	
4	68 69	15.9 15.7		•			18.0 15.2	76.6 75.5	•		18.9 19.5	
4	70	15.7	•			•	15.2	75.5 80.4		•	19.5	
4	70	14.2					16.6	80.4 85.3	•	•	17.5	
4	73	13.6	•		•	-	14.4	82.4		·	17.3	
4	74	15.5		•	•	•	16.4	84.1	•	•	18.5	
4	79	13.2		- 1			14.0	84.8	1	 	18.6	
4	80	13.5					11.8	84.2			20.7	
4	81	12.4					8.0	84.2			16.7	
4	83	14.1					12.4	84.8			21.0	
4	85	13.2					15.0	79.5			22.7	

AMB	ENT	PRG	PRH	GS	GH	IG	SDSH	PH	PKG	DMX	DCH	PSI
4	86	11.8					8.8	84.8			16.8	
4	87	13.6					10.8	82.6			19.8	
4	89	13.5					10.4	85.3			18.7	
4	90	16.5					12.0	84.2			20.0	
4	91	13.3					14.6	81.7			16.0	
4	92	13.5					13.0	85.5			18.1	
4	93	11.6					11.4	83.5			17.3	
4	95	13.7					10.8	83.8			20.3	
4	96	14.5					12.4	84.1			17.1	
4	102	17.3					12.0	77.9			20.2	
4	103	16.4					13.2	80.6			17.8	
4	105	15.8					10.0	83.1			20.7	
5	2	11.3					13.6	85.3			18.4	
5	6	13.5					16.6	87.6			17.2	
5	9	13.4					11.0	81.3			15.1	
5	10	14.2					14.4	85.8			15.1	
5	11	13.1					10.6	81.5			15.1	
5	13	13.5					12.0	84.6			15.1	
5	19	13.5					16.4	84.1			15.1	
5	20	15.8					17.0	84.1			15.9	
5	21	13.5					15.2	82.0			15.9	
5	22	14.8					6.8	84.6			20.4	
5	24	13.4 12.5					12.8	83.8			15.1	
5	25 28	12.5					13.6 11.8	82.9 82.9			15.1	-
	30	12.7	•	•			10.4	86.0			16.0 15.9	·
5	31	13.1	•	•			13.8	81.3	•		15.9	-
5	32	12.7					12.0	84.2			15.1	
5	33	11.2					10.0	83.3			15.9	
5	35	15.0			•		13.2	85.1		•	16.0	•
5	36	12.0	•	•	•	•	17.6	82.6		•	18.7	
5	41	12.6					6.8	85.1			16.8	
5	42	12.6					9.0	86.0			16.5	
5	44	14.8					7.6	79.7			16.8	
5	47	13.4					10.0	84.6			16.1	
5	52	13.5					8.4	83.8			26.8	
5	57	12.7					9.0	84.4			16.7	
5	61	12.2					8.0	85.8			15.6	
5	63	12.2					10.8	81.3			20.5	
5	65	12.7					10.6	83.3			15.9	
5	68	13.6					13.4	83.8			17.7	
5	69	13.5					12.6	85.5			17.6	
5	70	12.6					11.4	83.3			23.7	
5	72	12.5					12.8	87.1			19.0	
5	73	12.8					13.0	84.6			20.1	
5	74	14.0					14.8	85.5			20.1	
5	79	14.1					14.0	83.5			16.6	
5	80	11.8				-	10.6	82.0			20.2	
5	81	11.9					7.2	84.4			16.6	
5	83	13.2					11.2	83.8			18.3	
5	85	13.4					11.8	83.1			18.1	
5	86	12.1					8.8	83.8			16.1	
5	87	13.7					10.2	81.3			21.5	
5	89	12.0					8.4	77.8			17.1	
5	90	14.2					12.6	84.6			16.8	
5	91	14.0		.,			14.2	82.9			19.1	
5	92	12.7					12.0	82.2			19.1	
5	93	14.1					9.4	82.2			20.3	
5	95	14.9					5.6	84.1			17.9	
5	96	14.4					12.8	83.5			20.4	
5	102	15.9					11.6	79.7			21.8	<u> </u>
5	103	16.0					12.4	80.4			21.0	
5	105	13.3					10.6	83.1			21.7	

AMB	ENT	PRG	PRH	GS	GH	IG	SDSH	PH	PKG	DMX	DCH	PSI
6	2	14.6					14.8	80.8			23.5	
6	6	14.8					15.2	83.3			23.8	
6	9	14.2					12.2	80.6			19.3	
6	10	14.2					15.6	81.7			19.2	
6	11	15.2					11.2	78.8			22.4	
6	13	14.9					15.8	84.2			20.5	
6	19	14.4					14.2	80.4			20.1	
6	20	15.6					16.2	79.5			24.5	
6	21	14.3					16.4	80.2			20.1	
6	22	15.2					3.4	84.4			24.0	
6	24	13.2					14.2	81.1			17.8	
6	25	11.4					12.0	81.1			21.4	
6	28	13.0					10.6	84.8			24.4	
6	30	14.8					9.2	84.8			23.3	
6	31	14.1					13.0	82.0			19.4	
6	32	14.1					10.0	80.4			22.7	
6	33	11.8					13.0	82.9			22.6	
6	35	15.2					14.8	83.8			24.7	
6	36	16.6					16.4	81.5			25.3	
6	41	13.4					8.8	81.1			22.8	
6	42	13.4					10.2	83.5			24.7	
6	44	13.5					8.6	78.6			17.6	
6	47	13.7					11.0	82.9			23.4	
6	52	14.4					8.6	78.4			24.6	
6	57	12.6					8.8	80.4			22.6	
6	61	14.2					8.6	76.6			17.9	
6	63	14.3					11.4	77.9			20.8	
6	65	14.1					12.2	79.9			17.9	
6	68	14.6					15.0	81.7			20.0	
6	69	13.9					11.4	82.9			19.5	
6	70	13.3					11.4	80.8			25.9	
6	72	13.6					13.8	82.4			17.5	
6	73	12.9					12.4	81.7			26.1	
6	74	14.8					12.6	83.3			20.4	
6	79	13.7					11.8	82.9			21.8	
6	80	13.0					11.0	79.0			24.9	
6	81	12.0					7.6	83.3			19.2	
6	83	12.6					8.6	81.7		-	23.9	
6	85	12.5					12.6	82.2		-	23.7	
6	86	11.9					6.8	82.2		-	18.0	
6	87	14.1					10.2	77.9			26.3	
6	89	12.3					9.0	74.6			20.2	
6	90	13.3					11.4	80.2			20.5	
6	91	13.8					10.8	79.7			20.0	
6	92	13.8		•			13.0	83.1			22.9	
6	93 95	12.6 12.3		•			11.7 7.0	78.2 79.5	•		21.7 22.1	
6				•		•		79.5 78.2		•	22.1	
6	96 102	14.6 16.2		•		•	11.2 9.0	78.2 79.5		•	22.6	
				+	·				+			
6	103 105	14.1 15.3	-	+	•		11.0 9.0	77.5 79.7	-+	+	21.1 24.3	
6			11 1								24.3	
7	2	13.5	11.1	· ·			21.0	80.7	•	49	•	·
7	6	11.9	10.1	+			17.0	70 (•	59		
7	9	13.7	12.1	•			17.0	79.6	•	42	· ·	
7	10	13.7	11.6	•			23.0	78.5		42		
7	11	15.0	13.4	· ·			19.0	74.6	•	45	•	
7	13	14.3	11.8	•			22.5	78.3		43		
7	19	15.7	13.2	•			23.0	72.6	•	50	· ·	
7	20	14.0	13.1				19.0	81.7		44		
7	21	14.7	13.0	· ·			23.0	72.7	•	46	•	
7	22	15.0	10.7	- +		•		70.0	- +	57	•	·
7	24	14.8	12.7	-			23.0	79.2	•	38		
7	25	15.0	12.8				23.0	75.7		47		
7	28	13.9	11.7	-			21.0	77.4		44		
/	30	12.9	10.3	.		•	15.0	82.2		50		

7 32 144 126 210 720 45 49 7 33 133 133 111 210 784 49 7 35 137 118 220 789 48 7 36 150 152 2110 792 47 7 41 123 106 150 1	AMB	ENT	PRG	PRH	GS	GH	IG	SDSH	PH	PKG	DMX	DCH	PSI
7 33 11.3 11.1 .	7		14.2	11.5				23.0	76.8				
T	7												
7 36 15.0 15.0 15.0 21.0 79.2 47 7 41 17.3 10.6 15.0 81.5 39 7 42 17.6 10.8 15.0 82.4 52 7 44 17.4 10.4 10.8 15.0 81.5 47 7 44 17.4 10.4 10.6 15.0 81.5 47 7 47 17.7 11.6 18.5 81.2 49 7 7 7 7 7 7 7 7 7													
7													
T													
T					•								
7					•	•						•	·
7 52 140 110 1130 79 67 7 7 7 7 7 7 7 7					•	•						•	
7						•						•	
T						•							
7													
7 65 152	7												
7	7	65	15.2										
7 7 70 13.3 10.1 23.0 76.8 67 77 72 15.3 12.7 23.0 78.8 41 41 77 73 12.6 10.3 22.5 80.0 51 78 78 78 78 78 78 79 79 78 78 78 79	7	68	14.9	13.4				22.0	77.6		46		
7 7 72 15.3 12.7 22.5 80.0 51 7 7 3 12.6 10.3 22.5 80.0 51 7 7 73 12.6 10.3 22.5 80.0 51 7 7 74 13.9 11.7 23.0 79.6 41 41 7 7 80 12.4 10.4 15.0 77.0 46 41 15.0 77.0 46 44 7 80 12.4 10.4 15.0 77.0 46 46 7 81 12.0 9.7 13.0 81.0 49 46 7 81 12.0 9.7 13.0 81.0 49 46 7 83 12.2 10.2 14.5 80.4 49 49 7 85 16.3 14.0 22.5 79.0 46 47 7 85 16.3 14.0 22.5 79.0 46 47 7 85 12.5 10.6 17.0 76.6 45 47 7 87 12.5 10.6 17.0 76.6 45 47 7 87 12.5 10.6 17.0 76.6 45 47 7 7 87 12.5 10.6 17.0 76.6 45 47 7 7 89 12.9 10.4 17.0 76.6 45 49 49 49 7 90 13.0 10.4 17.5 82.0 49 49 7 90 13.0 10.4 17.5 82.0 49 49 7 91 16.0 14.2 18.0 76.4 38 7 92 13.3 11.4 19.0 79.6 48 48 7 95 12.1 9.9 10.8 16.5 79.4 43 43 43 7 95 12.1 9.9 10.8 16.5 79.4 43 43 7 95 12.1 9.9 10.5 16.5 81.4 47 7 7 7 10.2 15.4 12.2 12.5 15.5 15.5 15.5 15.5 17.5 2 59 7 10.5 13.8 11.5 17.5 81.2 63 88 40 7 10.5 13.8 11.5 17.5 81.2 63 88 15.5 17.5 81.2 63 88 89 17.0 98 17.0 98 17.0 98 17.0 98 17.0 98 17.0 98 17.0 98 17.0 98 .	7												
7	7	70											
7													
7													
7 80 12.4 10.4 15.0 77.0 46 7 81 12.0 9.7 13.0 81.0 49 7 83 12.2 10.2 145 80.4 49 7 85 16.3 14.0 22.5 79.0 46 7 86 12.5 10.6 22.0 81.6 47 7 87 12.5 10.6 170 76.6 45 7 99 12.9 10.4 17.0 76.6 45 7 90 13.0 10.4 17.0 76.6 45 7 90 13.0 10.4 17.0 76.6 45 7 91 16.0 14.2 180.0 76.4 38 7 92 13.3 11.4 190.0 79.6 48 49 7 92 12.3 10.8 16.5 79.4 43 43													
7 81 120 9.7 130 810 49 7 7 83 122 102 1.145 80.4 49 7 85 16.3 140 22.5 79.0 46 7 86 12.5 10.0 22.0 81.6 47 7 86 12.5 10.0 22.0 81.6 47 7 86 12.5 10.0 22.0 81.6 47 7 89 12.5 10.6 170 76.6 45 7 89 12.9 10.4 170 76.6 45 7 90 13.0 10.4 170 76.8 54 49													
7 83 12.2 10.2 14.5 80.4 49 7 85 16.3 14.0													
7 85 16.3 14.0 22.5 79.0 46 7 86 12.5 10.0 22.0 81.6 47 7 87 12.5 10.6 17.0 76.6 45 7 89 12.9 10.4 17.0 76.8 54 7 90 13.0 10.4 17.7 76.8 54 79.0 13.0 10.4 17.0 76.8 54					•		-						
7 86 12.5 10.0 22.0 81.6 47 7 87 12.5 10.6 17.0 76.6 45 7 89 12.9 10.4 17.0 76.6 45 79.0 13.0 10.4 17.0 76.6 49 49					•	•						•	·
7 87 12.5 10.6					•	•						•	
7 89 12.9 10.4						•						•	
7 90 13.0 10.4						•							
7 91 16.0 14.2													
7 92 13.3 11.4 19.0 79.6 48 7 93 12.9 10.8 16.5 79.4 51 51 51 51 51 51 51 51 57 57													
7 95 12.1 9.9 . 14.5 80.2 . 51 . 7 7 102 15.4 12.2 . 21.5 75.2 . 59 . . 7 103 16.0 14.0 . 18.0 75.6 . 40 . <td>7</td> <td>92</td> <td></td>	7	92											
7 96 12.9 10.5 16.5 81.4 .47 . 7 102 15.4 12.2 .21.5 75.2 59 . 7 103 16.0 14.0 .80 .75.6 .40 . 7 105 13.8 11.5 .75.8 .63 . 8 2 13.3 11.2 .63 . 8 6 12.7 9.8 .66 . 8 6 12.7 9.8 .66 . 8 9 11.9 9.3 <	7	93	12.9	10.8				16.5	79.4		43		
7 102 15.4 12.2	7	95							80.2				
7 103 16.0 14.0 . 18.0 75.6 . 40 . . 7 105 13.8 11.5 . </td <td></td>													
7 105 13.8 11.5 . 17.5 81.2 63 . 8 2 13.3 11.2 . 23.0 74.4 . 62 . 8 6 12.7 9.8 . . 11.0 62.4 .													
8 2 13.3 11.2 . 23.0 74.4 . 62 . 8 6 12.7 9.8 . 11.0 62.4 . . 8 9 11.9 9.3 . . 15.0 70.7 . 53 . 8 10 12.5 10.1 . . 22.0 74.4 . 51 . . 8 11 13.7 10.4 . . 18.0 68.8 .													
8 6 12.7 9.8 . 11.0 62.4 . 66 . 8 9 11.9 9.3 . 15.0 70.7 . 53 . 8 10 12.5 10.1 . 22.0 74.4 .													
8 9 11.9 9.3 . 15.0 70.7 . 53 . 8 10 12.5 10.1 . 22.0 74.4 . 51 . 8 11 13.7 10.4 . 18.0 68.8 . 54 . <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
8 10 12.5 10.1 . 22.0 74.4 . 51 8 11 13.7 10.4 . 18.0 68.8 . 54 8 13 12.8 10.4 . . 22.0 70.8 . <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
8 11 13.7 10.4 . 18.0 68.8 . 54 . 8 13 12.8 10.4 . . 22.0 70.8 . 53 . 8 19 12.9 9.8 . . <td></td>													
8 13 12.8 10.4 . . 22.0 70.8 . 53 . 8 19 12.9 9.8 . . 21.0 70.8 . 57 . 8 20 12.6 10.3 </td <td></td>													
8 19 12.9 9.8 . . 21.0 70.8 57 . 8 20 12.6 10.3 . . 22.0 71.2 55 . 8 21 12.8 9.3 .												•	
8 20 12.6 10.3						•						•	
8 21 12.8 9.3 . 22.0 62.1 . <					•	•	-					+	
8 22 10.7 </td <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>•</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>•</td> <td></td>					•	•				•		•	
8 24 12.5				,.5					, ,				
8 25 11.6 8.8 . . 20.0 70.8 . 48 . 8 28 13.0 10.9 . <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>57.5</td> <td></td> <td></td> <td></td> <td></td>									57.5				
8 28 13.0 10.9 . . 22.0 71.4 . 57 . 8 30 11.4 8.3 . . 10.5 71.6 . 59 . 8 31 13.0 10.7 . . 23.0 65.2 . 52 . 8 32 12.5 10.1 . . 20.0 66.4 . 61 . 8 33 11.1 7.2 . . 10.5 57.2 . 59 . 8 35 13.7 11.6 .				8.8				20.0			48		
8 31 13.0 10.7 . 23.0 65.2 . 52 . 8 32 12.5 10.1 . 20.0 66.4 . 61 . 8 33 11.1 7.2 . 10.5 57.2 . 59 . 8 35 13.7 11.6 . 22.0 72.0 . 54 . 8 36 14.5 12.8 . 23.0 73.2 . 48 . 8 41 12.9 10.3 . 15.5 73.6 . 53 . 8 42 11.8 8.1 . 11.0 71.6 . 57 . 8 44 12.4 10.1 . 14.0 72.8 . 57 . 8 47 12.2 10.4 . 18.0 75.2 . 60 . 8 52 11.4 7.7 . 8.0 73.2 . 67 .	8	28	13.0					22.0	71.4		57		
8 32 12.5 10.1 . 20.0 66.4 . 61 . 8 33 11.1 7.2 . 10.5 57.2 . 59 . 8 35 13.7 11.6 . 22.0 72.0 . 54 . 8 36 14.5 12.8 . 23.0 73.2 . 48 . 8 41 12.9 10.3 . 15.5 73.6 . 53 . 8 42 11.8 8.1 . 11.0 71.6 . 57 . 8 44 12.4 10.1 . 14.0 72.8 . 57 . 8 47 12.2 10.4 . 18.0 75.2 . 60 . 8 52 11.4 7.7 . 8.0 73.2 . 67 . 8 57 11.7 8.7 . 13.0 74.4 . 50 .					-	-							
8 33 11.1 7.2 . 10.5 57.2 . 59 . 8 35 13.7 11.6 . . 22.0 72.0 . 54 . 8 36 14.5 12.8 . . 23.0 73.2 . 48 . 8 41 12.9 10.3 . . 15.5 73.6 .													-
8 35 13.7 11.6 .<													
8 36 14.5 12.8													
8 41 12.9 10.3 . . 15.5 73.6 . 53 . 8 42 11.8 8.1 . . 11.0 71.6 . 57 . 8 44 12.4 10.1 . . 14.0 72.8 . 57 . 8 47 12.2 10.4 . . 18.0 75.2 . 60 . 8 52 11.4 7.7 . . 8.0 73.2 . 67 . 8 57 11.7 8.7 . . 13.0 74.4 . 50 . 8 61 13.0 10.3 . . 15.0 69.2 . 57 . 8 63 11.7 8.7 . . 17.0 70.4 . 59 .													
8 42 11.8 8.1 . . 11.0 71.6 . 57 . 8 44 12.4 10.1 . . 14.0 72.8 . 57 . 8 47 12.2 10.4 . . 18.0 75.2 . 60 . 8 52 11.4 7.7 . . 8.0 73.2 . 67 . 8 57 11.7 8.7 . . 13.0 74.4 . 50 . 8 61 13.0 10.3 . . 15.0 69.2 . 57 . 8 63 11.7 8.7 . . 17.0 70.4 . 59 .													
8 44 12.4 10.1 . . 14.0 72.8 . 57 . . 8 47 12.2 10.4 . . 18.0 75.2 . 60 . 8 52 11.4 7.7 . . 8.0 73.2 . 67 . 8 57 11.7 8.7 . . 13.0 74.4 . 50 . 8 61 13.0 10.3 . . 15.0 69.2 . 57 . 8 63 11.7 8.7 . . 17.0 70.4 . 59 .													
8 47 12.2 10.4 . . 18.0 75.2 . 60 . . 8 52 11.4 7.7 . . 8.0 73.2 . 67 . 8 57 11.7 8.7 . . 13.0 74.4 . 50 . 8 61 13.0 10.3 . . 15.0 69.2 . 57 . 8 63 11.7 8.7 . . 17.0 70.4 . 59 .					•		-				5/		
8 52 11.4 7.7 . . 8.0 73.2 . 67 . . 8 57 11.7 8.7 . . 13.0 74.4 . 50 . 8 61 13.0 10.3 . . 15.0 69.2 . 57 . 8 63 11.7 8.7 . . 17.0 70.4 . 59 .										•		•	-
8 57 11.7 8.7 . . 13.0 74.4 . 50 . 8 61 13.0 10.3 . . 15.0 69.2 . 57 . 8 63 11.7 8.7 . . 17.0 70.4 . 59 .					•	•	•					•	-
8 61 13.0 10.3 . . . 15.0 69.2 8 63 11.7 8.7 .						•	-					+	
8 63 11.7 8.7					•	•				•		•	
-, -, -, -, -, -, -, -, -, -, -, -, -, -	8	65	11.4	8.6				16.0	69.6		50		

8 69 11.8 9.3 . 16.0 66.8 . 63 8 70 12.1 8.0 . 11.5 62.4 . 65 8 72 11.8 48 8 73 12.8 10.1 .			DMX	PKG	PH	SDSH	IG	GH	GS	PRH	PRG	ENT	AMB
8 70 12.1 8.0 . 11.5 62.4 . 65 8 72 11.8 .	-		60		68.7						12.6	68	8
8 72 11.8 . <td></td>													
8 73 12.8 10.1 20.0 68.8 65 8 74 13.2 11.0 22.0 68.4 56 8 79 12.6 9.5 17.0 68.8 58 8 80 12.4 9.4 18.0 67.8 61 8 81 11.2 8.0 11.0 71.8 53 8 83 12.4 8.9 17.0 69.6 57 8 85 13.6 54 8 86 11.2 7.5 15.0 72.9 57 8 87 12.1 9.2 15.0 66.4 62 8 89 11.7 9.2 15.0 66.4 62 8 <					62.4	11.5				8.0			
8 74 13.2 11.0 . 22.0 68.4 56 8 79 12.6 9.5 . 17.0 68.8 58 8 8 112.4 9.4 . . 18.0 67.8 . 61 8 81 11.2 8.0 . . 17.0 69.6 . 57 8 83 12.4 8.9 . . 17.0 69.6 . 57 8 85 13.6 .										10.1			
8 79 12.6 9.5 . 17.0 68.8 58 8 80 12.4 9.4 . 18.0 67.8 61 8 81 11.2 8.0 . . 11.0 71.8 53 8 83 12.4 8.9 .<									•				
8 80 12.4 9.4 . 18.0 67.8 61 8 81 11.2 8.0 . 11.0 71.8 53 8 83 12.4 8.9 .	+	•							•				
8 81 11.2 8.0 <td< td=""><td>- </td><td>•</td><td></td><td>•</td><td></td><td></td><td>•</td><td>•</td><td>•</td><td></td><td></td><td></td><td></td></td<>	- 	•		•			•	•	•				
8 83 12.4 8.9 <td< td=""><td>- </td><td>•</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td></td<>	- 	•						•					
8 85 13.6 . <td>+ -</td> <td></td>	+ -												
8 86 11.2 7.5 . 15.0 72.9 . 57 8 87 12.1 9.2 . . 12.0 68.2 . 57 8 89 11.7 9.2 . . 15.0 66.4 . 62 8 90 11.6 9.2 . . 17.0 76.5 . 62 8 91 13.0 .													
8 89 11.7 9.2 . 15.0 66.4 . 62 8 90 11.6 9.2 . . 17.0 76.5 . 62 8 91 13.0 .					72.9	15.0				7.5	11.2	86	8
8 90 11.6 9.2 . . 17.0 76.5 . 62 8 91 13.0 .													8
8 91 13.0 </td <td></td>													
8 92 12.4 8.8 . . 17.0 68.9 . 55 8 93 12.0 9.1 . . 16.0 66.7 . 56 8 95 11.8 9.0 . . 10.0 68.8 . 64 8 96 11.5 8.9 . . 16.0 74.5 . 59 8 102 14.0 10.8 . . 15.0 67.4 . 62 8 103 13.1 .					76.5	17.0				9.2			
8 93 12.0 9.1 . 16.0 66.7 . 56 8 95 11.8 9.0 . . 10.0 68.8 . 64 8 96 11.5 8.9 . . 16.0 74.5 . 59 8 102 14.0 10.8 .													
8 95 11.8 9.0 . 10.0 68.8 . 64 8 96 11.5 8.9 . . 16.0 74.5 . 59 8 102 14.0 10.8 . . 15.0 67.4 . 62 8 103 13.1 .													
8 96 11.5 8.9 . . 16.0 74.5 . 59 8 102 14.0 10.8 . </td <td></td>													
8 102 14.0 10.8 . 15.0 67.4 . 62 8 103 13.1 .			64										
8 103 13.1 . <td></td>													
8 105 13.8 10.7 . 11.0 75.9 . 67 9 2 13.0 9.6 . 22.0 75.6 . 53 9 6 13.0 10.4 . 14.5 64.0 . 51 9 9 12.2 9.6 . 16.0 76.0 . 50 9 10 11.9 9.4 . 22.0 76.0 . 50 9 11 12.7 10.3 . 19.0 73.8 . 51 9 13 9 19 11.6 9.9 . . 22.0 68.9 . . . 9 20 12.3 10.0 . . 23.0 74.2 . . .	_ + ·			- +	07.4	15.0	-		•	10.8			
9 2 13.0 9.6 . . . 22.0 75.6 . 53 9 6 13.0 10.4 . . 14.5 64.0 . 51 9 9 12.2 9.6 . . 16.0 76.0 . 50 9 10 11.9 9.4 .	-	•			75 Q	11.0		•	•	10.7			
9 6 13.0 10.4 . . 14.5 64.0 . 51 9 9 12.2 9.6 . . 16.0 76.0 . 50 9 10 11.9 9.4 . . 22.0 76.0 . 50 9 11 12.7 10.3 . . 19.0 73.8 . 51 9 13 9 19 11.6 9.9 . . . 22.0 68.9 . . 54 9 20 12.3 10.0 . . . 23.0 74.2 . . .	- 	•		•				•	•				
9 9 12.2 9.6 . . 16.0 76.0 . 50 9 10 11.9 9.4 . . 22.0 76.0 . 50 9 11 12.7 10.3 . . 19.0 73.8 . 51 9 13 9 19 11.6 9.9 . . 22.0 68.9 . . 54 9 20 12.3 10.0 . . 23.0 74.2 . . .	-+												
9 10 11.9 9.4 . <t< td=""><td>- </td><td>•</td><td></td><td>•</td><td></td><td></td><td>•</td><td>•</td><td>•</td><td></td><td></td><td></td><td></td></t<>	- 	•		•			•	•	•				
9 11 12.7 10.3 . . 19.0 73.8 . 51 9 13 . <td>-</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>•</td> <td></td> <td></td> <td></td> <td></td>	-	•						•	•				
9 13 . </td <td>+ -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>•</td> <td></td> <td></td> <td></td> <td></td>	+ -							•	•				
9 19 11.6 9.9 . <t< td=""><td>- - </td><td></td><td></td><td></td><td></td><td>. , , , ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	- - 					. , , , ,							
			54		68.9	22.0				9.9	11.6		
			55		74.2	23.0				10.0	12.3	20	9
			53		75.3	22.0				10.3	12.7	21	9
9 22 11.9													
9 24 14.5													
9 25 12.3 10.1													
9 28 12.5 10.0													
9 30 11.6 9.2													
9 31 13.4 10.2			48										
9 32 12.7 9.9									•				
9 35 13.1 10.8	<u> </u>	•						•	•				
9 36 14.0 11.5		•		•				•	•				
9 41 12.1 9.9	- 	•						•	•				
9 42 11.9 9.4	+ '							•	•				
9 44 11.5					,,,,,					,,,,			
9 47 12.3 10.0			54		76.4	15.5				10.0			
9 52 12.3 9.7			63			12.0				9.7	12.3	52	9
9 57 11.4 8.8			53		76.2	12.0					11.4	57	
9 61 12.4 9.9 14.0 72.3 . 55									-				
9 63 12.4 9.6 16.5 71.7 . 60													
9 65 12.0 9.6													
9 68 12.7 9.8													
9 69 11.9 9.1													
9 70 12.7 9.7													
9 72 13.0 10.0 . . . 22.0 71.5 . 53 9 73 12.4 10.1 . . . 21.0 73.3 . . 56		•	53										
9 74 13.0 10.1	 -												
9 79 12.3 10.2	-	•							•				
9 80 11.8 9.2	-	•	51 52	•					•				
9 81 11.1 8.3		+	55 55	+			-	•	•				
9 83 12.1 9.8								•					
9 85 13.6				- :									
9 86 10.8 8.1					77.4	15.0				8.1			
9 87 12.1 9.9			53		68.9					9.9	12.1		9
9 89 11.9 9.1	$\overline{}$												9

AMB	ENT	PRG	PRH	GS	GH	IG	SDSH	PH	PKG	DMX	DCH	PSI
9	90	12.0	9.4				17.5	77.8		52		
9	91	14.0	10.7				21.0	70.4		46		
9	92	12.5	10.1				21.5	73.8		50		
9	93	11.8	9.2				16.5	72.9		51		
9	95	10.8	8.3				8.0	75.6		51		
9	96	12.2	9.8				17.0	75.8		53		
9	102	14.2	11.9				17.0	72.6		51		
9	103	13.2	10.3				17.0	71.7		49		
9	105	13.4	10.7				12.0	76.0		59		
10	2						19.8					
10	6											
10	9						13.8					
10	10											
10	11						1/7			-		
10	13				•		16.7			-		
10 10	19 20				•		18.4		•	+	•	
10	20				•		19.0		•	+	•	
10	21				·	•	19.0	•		+	·	
10	24	•		-	-		16.0			+	•	
10	25	•		-	-		15.4			+	•	-
10	28	•		-	-		15.4			+	•	-
10	30	•					13.4	•		•		
10	31	•					17.8	•		•		
10	32	•					17.0	•		•		
10	33	•		•	•		19.0	•	•	<u> </u>	•	
10	35	•		•	•		17.8	•	•	<u> </u>	•	
10	36	•		•	•		20.6	•	•	<u> </u>	•	
10	41	•		•	•		11.6	•	•	 	•	
10	42						12.4			1		
10	44						11.2			1		
10	47	•					13.0			<u> </u>		
10	52						13.2					
10	57						14.6					
10	61						14.6					
10	63						12.0					
10	65						17.0					
10	68											
10	69						19.6					
10	70						19.6					
10	72						19.2					
10	73											
10	74						17.0					
10	79						11.0					
10	80						13.2					
10	81						14.2					
10	83						15.2					
10	85						14.0					
10	86						16.0					
10	87						18.4					
10	89						15.0					
10	90						13.4					
10	91						16.2					
10	92						10.0					
10 10	93 95						14.0 13.4					
				•						•		
10	96						15.8					
10 10	102 103			· ·	•		10.8 15.6	•		+	•	
10	103			•	•		15.6	•		•		
				•						•	•	
11	2			•			19.4			•		
11	6						10.0			•		
11 11	9						12.8			-		
11	11	•		•	•	•	•		•	•	•	
[[]	11							•		•		

AMB 11	ENT 13	PRG	PRH	GS	GH	IG	SDSH 20.2	PH	PKG	DMX	DCH	PSI
11	19	•				•	20.2			•		
11	20						20.4					
11	21						20.0					
11	22											
11	24						21.8					
11	25						14.8					
11	28											
11	30						12.4					
11	31						14.8					
11	32				·						·	
11	33						20.8					
11	35						14.8					
11	36 41		•				19.0 9.6					
11	41			•	· ·		10.2	•		•	· ·	
11	44	•					9.8	•	•			
11	47					•	11.6					
11	52			•	•	•	9.4	•	•	•	•	
11	57			•	•	•	15.2	1	•	•	•	•
11	61	•	+		·	•	12.0	+	+	+	·	•
11	63	•	•	-	-	•	10.2	•	-	-	-	
11	65				•	•	18.4		-		•	
11	68	•		•		•	10.7			•		•
11	69						21.2					
11	70						16.8					
11	72						21.2					
11	73											
11	74						16.0					
11	79						9.8					
11	80						12.2					
11	81						12.0					
11	83						13.4					
11	85						15.8					
11	86						12.2					
11	87						14.0					
11	89						13.2					
11	90						12.0					
11	91						16.2					
11	92						8.4					
11	93 95				•		15.2 10.6				•	
11	96		•		•	•	12.0	•	•		•	
11	102			•	•	•	11.0		•	•	•	
11	102	•	1	· ·	•	•	13.0	+	+	+	•	-
11	105	•	•	-	-	•	13.0	•	-	-	-	
12	2	13.5	· ·	•	·		20.0	1	-	•	·	34
12	6	13.3	1	9.9	29.7	89	14.0			•		48
12	9	13.7		,.,	27.1		14.5				•	33.0
12	10	13.2		9.7	27.3	100	14.5					31.0
12	11	13.1		9.6	27.5	99	16.5					30.0
12	13	13.6		9.4	26.3	100	21.0					36.0
12	19	13.9		9.0	26.7	100	20.0					31.0
12	20	18.1					20.5					35.0
12	21	13.2		9.4	27.1	100	21.0					33.0
12	22	13.6					10.5					41.0
12	24	13.6		9.6	28.2	100	22.0					37.0
12	25	12.8		8.5	24.0	100	21.5					36.0
12	28	12.5		9.0	26.3	97	16.5					33.0
12	30	12.9		8.7	27.1	99	11.0					39.0
12	31	14.4		9.9	29.1	100	20.5					38.0
12	32	12.5		9.7	28.7	100	18.0					38.0
12	33	13.6		9.2	26.9	99	19.5					47.0
12	35	13.8	-				19.5		- +			36.0
12	36	14.1		12.5	38.8	71	18.0					48.0

AMB	ENT	PRG	PRH	GS	GH	IG	SDSH	PH	PKG	DMX	DCH	PSI
12	41	13.4					11.0					36.0
12	42	12.8					13.0					33.0
12	44	12.9		. 11.1	. 22 (71	11.5					28.0
12 12	47 52	14.1 14.3		11.1 15.9	33.6 43.5	71 71	13.0 12.5	•	•	-	•	36.0 44.0
12	57	11.7		15.9	42.0	58	7.5	•	•	-	•	28.0
12	61	13.0		13.7	72.0	30	14.5				•	29.0
12	63	13.1		8.8	26.2	98	20.0					48.0
12	65	13.1					18.0					35.0
12	68	13.3		13.1	29.5	99	14.5					37.0
12	69	12.9		9.4	28.1	98	15.5					34.0
12	70	11.6		8.7	26.4	98	18.0					49.0
12	72	13.2		9.2	26.9	100	22.5					42.0
12 12	73 74	13.0 13.2		9.4 11.4	27.2 34.1	100 96	19.0 21.5	•	-	-	•	40.0 36.0
12	79	13.5		11.4	34.1	70	17.0	•	•	- 1	•	33.0
12	80	12.0		11.3	36.9	54	14.5					34.0
12	81	12.6		9.4	28.8	55	11.0					31.0
12	83	11.9		14.1	39.9	74	14.0					34.0
12	85	11.2		10.4	30.9	98	20.5					38.0
12	86	13.1		8.7	25.5	93	15.0					36.0
12	87	12.5		15.2	41.5	60	13.5			-		35.0
12 12	89 90	11.8 12.3		10.2	32.6	62	11.5 18.0	-	-	•	·	33.0 34.0
12	91	14.1	•	13.9	45.5	84	15.0	•	•	•	•	34.0
12	92	13.1		12.4	38.1	75	17.0			- i		30.0
12	93	12.2		11.3	34.8	69	16.0					31.0
12	95	11.6		14.7	39.7	58	9.0					30.0
12	96	13.6		11.9	37.7	62	17.5					32.0
12	102	15.1		16.3	52.2	87	15.0					42.0
12 12	103	14.3		13.4	44.9	70	14.0					35.0 42.0
	105	14.4		12.2	22.7	99	11.0 20.0				•	42.0
13 13	2 6	15.2 13.4		12.2 10.7	33.7 31.8	99	12.0					50.0
13	9	14.0		11.8	33.2	99	12.5					36.0
13	10	14.0		10.0	26.2	100	15.0					38.0
13	11	14.9		12.8	35.6	100	14.0					32.0
13	13	14.3		11.4	31.1	100	21.5					38.0
13	19	14.6		11.1	30.6	100	21.5					36.0
13	20	16.3		6.6	46.7	94	23.0					37.0
13 13	21 22	14.7 13.2		12.0 15.0	34.8 41.5	100 52	21.0 9.5	•	-	-	•	39.0 46.0
13	24	14.1	•	8.6	23.1	100	15.0	1	-	+	•	35.0
13	25	14.4		10.1	27.1	100	17.5				•	34.0
13	28	14.3		13.0	35.5	96	17.5					40.0
13	30	13.6		12.3	37.0	95	15.0					39.0
13	31	14.3		11.7	32.0	100	22.0					36.0
13	32	14.7		9.6	26.7	100	16.0					37.0
13 13	33	13.4 15.0		11.1	32.3	99 99	15.0			•		35.0
13	35 36	16.8		12.7 15.3	34.5 44.6	89	20.5 23.0	•	•	•		35.0 37.0
13	41	14.5	-	14.0	42.2	60	15.5	+	+	+	•	35.0
13	42	14.9		14.6	42.4	86	17.0				•	36.0
13	44	15.3		15.4	47.2	59	14.5					40.0
13	47	15.2		14.3	47.7	68	16.5					49.0
13	52	14.2		11.8	35.9	63	13.0					57.0
13	57	14.0		16.1	44.7	66	14.0					36.0
13	61	14.8		14.5	43.6	64	15.0					40.0
13 13	63 65	12.2 13.8		7.2 12.4	21.1 35.0	100 93	12.5 18.5	+		+	•	43.0 36.0
13	68	13.6	•	12.4	32.2	93	19.5	1	-	+	•	38.0
13	69	14.6		12.8	35.9	99	19.0				•	38.0
13	70	11.9		11.6	31.7	100	16.0					52.0
13	72	13.9		10.4	37.2	100	16.0					34.0
13	73	14.0		8.8	24.2	100	18.0					38.0

AMB	ENT	PRG	PRH	GS	GH	IG	SDSH	PH	PKG	DMX	DCH	PSI
13	74	15.1		8.5	23.6	100	18.5					37.0
13	79	15.4		14.1	40.7	96	19.0					35.0
13	80	15.3		14.7	42.5	86	14.5					35.0
13	81	15.3		12.3	36.7	67	11.0					36.0
13	83	13.9		12.7	39.6	54	14.5					36.0
13	85	15.9		12.1	33.3	100	22.5					43.0
13	86	13.5		13.6	39.3	86	18.0					34.0
13	87	13.7		14.8	43.4	85	13.5					37.0
13	89	13.4		10.6	31.2	67	14.5					38.0
13	90	15.7		14.4	41.6	92	19.0					41.0
13	91	15.4		13.6	41.8	71	15.0					34.0
13	92	15.6		14.4	42.7	82	16.5					34.0
13	93	15.6		13.2	37.4	99	22.0					37.0
13	95	13.4		13.0	40.4	52	22.0					37.0
13	96	16.0		14.1	43.2	82	19.5					33.0
13	102	18.3		17.4	54.4	62	20.0					45.0
13	103	15.8		12.1	35.8	84	11.0					39.0
13	105	16.7		23.6	62.6	57	10.0					43.0

Cuadro 12 - Rendimiento de harina de ambientes argentinos

Amb # 1	Amb # 2	Amb # 3
71.0	67.7	71.5
1.		61.3
67.0	68.5	63.6
65.0	65.0	62.9
66.2	66.6	66.2
		61.0
		64.0
67.0	64.5	56.1
67.1	64.6	66.8
	70.3	65.4
		61.3
		66.4
		63.8
		66.9
		65.2
		66.4
70.4		69.3
		67.4
		58.0
		67.5
		66.1
		64.3
		66.6
		61.5
		62.8
		65.8
		62.5
		65.9
		69.0
65.9	70.9	66.8
59.0	60.3	59.9
71.8		63.3
69.8	68.8	69.9
69.2	67.5	63.8
69.8	68.0	68.5
68.6	68.1	66.3
68.7	65.5	64.8
67.0	66.7	64.2
70.8	59.1	63.3
	64.6	67.0
		69.8
		67.2
	_	70.4
		63.2
		67.7
		65.7
		62.2
68.0		65.0
		55.3
67.3	65.6	65.0
	71.0 67.0 65.0 66.2 68.0 66.6 67.0 67.1 64.4 69.3 73.7 69.4 70.3 67.4 69.0 70.4 70.1 68.0 70.4 66.8 70.3 66.4 60.4 66.1 66.8 62.2 73.3 70.0 65.9 59.0 71.8 69.8 69.8 69.2 69.8 68.6 68.7 70.8 68.7 71.3 63.8 68.4 67.0 70.8 68.7 71.3 63.8 68.4 67.0 66.7 66.3 67.2 68.0 58.2	71.0 67.7 . . 67.0 68.5 65.0 65.0 66.2 66.6 68.0 68.9 66.6 68.4 67.0 64.5 67.1 64.6 64.4 70.3 69.3 66.3 73.7 68.1 69.4 66.6 70.3 69.7 67.4 67.1 69.0 67.3 70.4 69.4 68.0 67.3 70.4 69.8 66.8 69.0 70.3 67.2 66.4 66.5 60.4 56.4 66.1 68.5 66.8 68.1 62.2 62.3 73.3 65.2 70.0 68.0 65.9 70.9 59.0 60.3 71.8 68.0 68.6 68.1 68.7

Cuadro 13 - Resultados reológicos

AMB	ENT	ABMIX	TM	MAL	ABFA	WFA	TDFA	EFA	CF12	ALW	ALPL
1	2	61.5	5.0	6.0	57.9		9.2	13.7		353	0.67
1	6										
1	9	61.0	4.1	5.8	61.0		7.2	8.9		265	0.74
1	10	61.8	3.2	6.7	63.7		8.2	12.2		409	1.45
1	11	61.6	4.0	6.0	63.8		8.5	13.2		355	1.24
1	13	61.7	4.3	6.0	60.8		8.2	9.2		354	1.14
1	19	60.2	3.5	5.8	59.8		6.2	8.7		271	0.89
1	20	63.6	1.2	4.7	57.8		2.0	1.4		68	0.46
1	21	61.0	3.5	5.7	60.8		7.5	9.9		280	0.58
1	22	61.8	3.0	6.3	64.5		7.5	10.7		373	0.73
1	24	61.8	3.0	6.2	63.5		5.4	8.7		299	0.56
1	25	61.4	4.2	5.7	61.5		7.9	11.1		357	0.86
1	28	62.0	3.1	6.0	61.6		5.5	10.0		264	0.56
1	30	60.6	3.2	5.8	60.9		6.0	8.0		183	0.61
1	31	61.7	3.4	6.3	64.8		7.2	9.1		288	0.61
1	32	61.4	2.4	5.9	64.0		5.2	6.2		214	0.63
1	33	60.5	2.4	6.1	60.0	•	5.8	6.4		188	0.42
1	35 36	60.3 62.6	3.4	5.8	60.3	•	5.7 8.0	8.5 12.2	•	259 420	0.73 0.98
1	41	60.2	3.5	6.4 4.3	66.0 57.2	•	5.9	7.4		174	0.98
1	41	60.2	3.5	4.3	57.2	•	6.3	6.8		174	0.61
1	44	62.3	2.3	5.0	62.1		4.7	7.5		166	1.06
1	44	61.5	2.0	5.0	62.1		4.7	2.7	•	138	0.51
1	52	60.5	3.2	4.7	55.8		5.2	6.4	•	146	0.33
1	57	60.3	2.3	5.0	61.6		3.2	3.4	•	97	0.33
1	61	59.9	3.3	5.1	60.9	•	5.0	7.7	•	180	0.73
1	63	60.1	4.3	4.1	53.3	•	2.2	7.1	•	184	0.39
1	65	61.1	3.3	5.3	57.3	•	6.0	7.3	•	104	0.37
1	68	60.9	3.5	5.1	58.8	•	6.3	7.6	•	244	0.56
1	69	60.7	3.4	5.2	59.2		7.2	9.2	•	245	0.64
1	70	58.2	5.0	3.9	51.0		1.5	6.1		124	0.57
1	72	61.6	3.5	5.1	60.3		5.8	9.7		316	0.67
1	73	60.2	4.4	4.7	55.6		4.5	9.6		225	0.60
1	74	63.5	3.5	6.1	63.7		6.5	8.2		337	0.54
1	79	60.9	4.0	5.0	57.6		5.2	7.0		208	0.45
1	80	60.6	3.0	5.9	58.5		4.3	5.0		172	0.56
1	81	59.8	3.4	5.0	59.5		4.8	5.8			
1	83	60.2	4.3	5.2	57.8		6.0	8.7		207	0.59
1	85	60.7	3.5	5.3	55.1		6.5	8.0		186	0.44
1	86	59.9	3.0	5.0	59.0		4.0	4.0		125	0.50
1	87	61.9	1.2	5.8	61.8		3.4	2.8		133	0.49
1	89	60.3	3.2	4.8	56.9		3.6	4.9			
1	90	60.9	4.1	5.0	56.2		2.5	6.3		199	0.41
1	91	60.6	2.3	6.9	65.1		7.0	10.9		332	0.91
1	92	60.8	3.3	6.0	60.2		6.5	7.6		251	0.63
1	93	60.6	3.0	4.9	59.8		4.2	3.9			
1	95	60.0	2.2	4.9	58.6		3.2	3.2		105	0.72
1	96	63.0	2.4	6.3	61.7		4.5	7.0			
1	102	64.8	1.2	7.2	63.3		8.2	7.9		216	0.32
1	103	63.0	1.4	6.8	62.6		6.2	7.2		218	0.55
1	105	63.2	1.2	5.9	60.4		3.5	8.2		109	0.65
2	2	64.4	7.5	5.8	59.8		25.0	35.5		426	0.79
2	6						440	40.0		407	
2	9	64.1	4.5	6.2	65.7		14.2	13.2		437	0.66
2	10	63.1	5.0	6.4	62.7		16.0	31.4		345	1.22
2	11	64.0	4.2	6.8	67.3		24.2	21.0		541	0.92
2	13	64.5	6.2	6.6	63.4		27.9	35.1		357	0.92
2	19	63.7	4.0	6.1	62.4		12.8	21.2		327	0.51
2	20	64.6	1.1	5.4			. 21.0	20.1		55	0.39
2	21	63.1	5.0	6.2	62.4		21.8	28.1		435	0.95

2 2 2 2 2	22 24	ABMIX 64.3	7.0	MAL	ABFA		TDFA	EFA			ALPL
2	24		7.0	5.7	64.6		38.5	44.0		556	0.71
	24	63.9	3.5	7.2	64.8		19.4	27.3		518	0.73
2	25	63.4	4.1	6.6	62.0		13.5	22.3		369	0.37
	28	63.6	4.6	7.0	63.3		24.8	28.6		463	0.61
2	30	63.1	6.1	5.7	63.1		20.3	11.0		467	0.85
2	31	64.1	4.5	7.1	67.1		24.5	22.8		496	0.86
2	32	63.3	4.0	5.9	62.9		13.8	21.6		387	0.50
2	33	63.1	3.5	6.4	60.6		9.2	12.4		298	0.25
2	35	64.2	7.3	5.8	63.0		30.8	28.7		439	0.92
2	36	64.7	3.2	7.0	70.7		23.0	18.0		557	0.85
2	41	62.8	3.3	5.5	61.6		10.5	13.7		284	0.36
2	42	63.0	4.2	6.3						337	0.75
2	44	63.1	3.1	6.2	65.4		9.2	11.1		301	0.54
2	47	63.0	2.3	6.2	64.0		8.7	7.7		261	0.39
2	52	64.2	2.2	5.2	59.0		5.7	4.8		153	0.26
2	57	63.0	2.2	6.3	65.0		6.8	9.1		249	0.54
2	61	62.7	2.4	5.6	61.8		4.5	6.8		217	0.41
2	63	63.0	3.4	5.3	54.9		8.8	11.0		339	0.21
2	65	64.5	4.1	6.4	59.7		14.7	22.0			
2	68	64.5	3.4	6.2	61.5	•	20.9	33.6		413	0.47
2	69	63.7	3.5	5.7	63.1		10.5	11.4		352	0.42
2	70	63.5	3.4	5.2	56.5		6.7	13.7		214	0.32
2	72 73	63.7	4.2	5.5		•	10.5	20.8		361	0.37
	74				60.4		16.2	21.0	•	509	
2	79	64.4 63.1	3.0 4.3	6.5 6.0	65.4 63.0	•	10.2	15.8		462	0.81 0.71
2	80	63.3	2.3	6.0	61.6	•	4.7	6.4	•	242	0.71
2	81	62.6	2.5	5.8	63.5		7.2	9.3	•	253	0.20
2	83	62.9	1.5	6.1	61.5	-	3.5	4.2	•	173	0.03
2	85	65.1	3.3	6.4	01.5	•	5.5	7.2	•	173	0.24
2	86	62.2	2.2	6.3	63.2	+	4.8	6.4		269	0.49
2	87	63.5	1.3	6.0	62.6		4.2	4.3		130	0.45
2	89	62.4	2.5	6.1	62.0		5.8	7.0			
2	90	62.2	5.0	5.8	59.7		6.3	15.1		282	0.60
2	91	65.6	2.2	6.7	66.2		8.5	11.0		294	0.67
2	92	63.2	3.1	6.2	63.8		9.9	12.3		343	0.75
2	93	62.9	2.2	6.8	65.2		4.7	6.4			
2	95	62.8	3.4	5.8	62.5		6.5	7.5			
2	96	64.6	3.2	6.3	63.9		6.8	12.4			
2	102	64.7	1.3	6.8	62.1		6.5	7.4		145	0.48
2	103	64.0	2.0	6.2	63.4		11.7	11.9		266	0.55
2	105	64.8	1.0	5.2	61.0		3.7	2.5		117	0.35
3	2	63.7	7.2	5.8	60.9		16.4	22.8		447	1.20
3	6	64.0	3.2	5.8	58.6		7.2	7.4			
3	9	62.8	5.1	6.0	65.5		14.3	10.9		469	1.65
3	10	62.7	6.0	5.7	59.6		19.5	28.7			
3	11	63.4	6.3	5.7	61.8		13.9	18.5		402	1.71
3	13	64.0	15.3	5.0	60.2		47.1	57.8			
3	19	63.0	4.2	5.8	61.6		6.7	12.3		376	0.88
3	20	64.3	1.1	4.9	57.2		2.3	1.5		73	0.71
3	21	62.4	5.0	4.9	58.2	•	9.1	12.5		363	0.78
3	22 24	64.3	4.0	6.0	64.8	· ·	8.8	14.6 14.1	•	445 447	1.03 1.32
3	25	63.2 63.2	4.3 7.0	5.5 5.9	63.1 59.4	•	6.4 23.0	38.5	•	447	0.92
3	28	62.3	4.2	5.9	59.4	•	8.3	12.5		324	0.92
3	30	63.8	5.1	5.7	63.7	•	14.0	9.4		413	1.18
3	31	63.0	6.2	5.7	62.2	•	22.7	30.9		413	1.18
3	32	62.3	5.1	4.8	60.5	+	60.7	10.7	•	299	0.86
3	33	62.1	5.2	5.1	57.0	·	6.1	10.7	•	292	0.54
3	35	63.9	6.2	6.0	61.7	+	15.7	24.1	•	272	0.34
3	36	65.9	2.3	7.9	63.3	•	11.3	8.6	•	341	1.58
3	41	64.3	2.5	6.3	66.7	•	9.0	7.5	•	323	0.93
3	42	63.5	6.4	5.3	62.5	•	12.7	8.1	•	414	1.48

AMB	ENT	ABMIX	TM	MAL	ABFA	WFA	TDFA	EFA	CF12	ALW	ALPL
3	44	64.0	2.5	5.9	68.2		11.4	6.8		386	1.28
3	47	64.3	2.3	6.1	68.0		9.7	4.9		321	1.07
3	52	63.8	2.5	5.0	58.3		5.3	4.7		217	0.34
3	57	63.4	2.1	6.4	70.8		7.7	5.7		353	1.31
3	61	63.8	2.4	5.9	67.0		10.3	5.8		357	1.45
3	63	62.1	5.5	4.2	53.1		8.2	11.9		258	0.41
3	65	62.4	5.1	5.9	61.9		10.2	16.0			
3	68	62.0	7.1	3.9	56.1		8.6	15.4		338	1.17
3	69	64.3	4.1	5.4	65.0	•	12.7	9.9	•	442	1.03
3	70 72	63.3	6.2	4.0	53.1		5.2	13.6		235	0.48
3		63.3	5.2	5.2	F7.1		10.5	15.0		394	0.92
3	73 74	63.8 62.8	7.2	4.8 4.8	57.1 58.3	•	12.5 14.8	15.9 24.2	•	307 398	0.60 1.79
	74		6.0				12.0	10.2	•	435	
3	80	65.5	4.1	5.6	64.1 67.1	•		9.7	•	435	1.04
3	81	63.5 62.9	2.4	6.8 5.8	66.8		6.5 8.5	5.7	•	295	1.03 1.30
3	83	62.9	1.4	6.6	68.7		5.2	5.7		293	1.30
3	85	65.3	5.1	6.0	00.7		5.2	3.7		371	0.72
3	86	62.3	2.3	6.3	66.4		6.2	7.6		316	1.03
3	87	63.0	1.4	5.9	64.9		3.8	3.8		164	1.15
3	89	62.4	3.2	6.1	64.2		3.0 8.0	8.3		273	1.13
3	90	63.7	4.5	5.3	60.9		9.7	14.4		301	0.78
3	90	63.4	3.2	5.9	00.9		7.1	14.4		396	0.78
3	92	65.0	3.3	6.3	65.0	•	10.4	8.0	•	394	1.10
3	93	64.2	1.5	6.9	69.0		7.0	7.8		301	1.10
3	95	65.4	1.5	5.8	65.2	•	4.8	3.6	•	188	1.04
3	96	67.1	3.5	6.2	03.2		7.0	3.0		100	1.04
3	102	64.1	1.3	6.5	61.7		5.2	6.2		145	0.50
3	103	63.2	2.0	6.3	64.5		7.5	8.2		110	0.00
3	105	65.4	1.2	6.1	63.1	•	4.0	2.4	•	112	0.72
4	2	5511		011	57.2	96.0			20.0		0.7.2
4	6		- 1		62.7	97.0		-	30.0	•	•
4	9				61.9	94.0			60.0		
4	10				62.1	100.0			30.0		
4	11				65.9	100.0			20.0		
4	13				61.1	99.0			20.0		
4	19				59.9	90.0			20.0		
4	20				66.8	100.0			20.0		
4	21				65.0	94.0			40.0		
4	22				63.9	30.0			140.0		
4	24				65.6	99.0			20.0		
4	25				61.8	56.0			20.0		
4	28				69.0	74.0			60.0		
4	30				62.3	0.88			80.0		
4	31				65.1	100.0			40.0		
4	32				65.7	95.0			60.0		
4	33				64.3	92.0			20.0		
4	35				61.5	100.0			40.0		
4	36				64.8	96.0			20.0		
4	41				64.1	74.0			50.0		
4	42				64.7	70.0			100.0		
4	44				65.6	81.0			60.0		
4	47				66.8	48.0			100.0		
4	52				57.4	50.0			100.0		
4	57		•		68.3	52.0			80.0		
4	61			•	64.6	62.0			90.0	•	
4	63		•		57.9	54.0			20.0		
4	65				60.6	70.0			20.0		
4	68 69				66.0	98.0			40.0		
4	70	·		-	66.0 55.3	83.0 96.0			60.0		•
4	70	•		•	63.9	96.0 87.0		•	20.0 30.0	•	•
4	73		-	•	60.3	90.0	•	•	30.0	•	•
4	13			•	00.3	90.0			ას.ს		

AMB	ENT	ABMIX	TM	MAL	ABFA	WFA	TDFA	EFA	CF12	ALW	ALPL
4	74				65.5	68.0			20.0		
4	79				63.7	84.0			40.0		
4	80				64.6	60.0			40.0		
4	81				66.3	52.0			100.0		
4	83				64.5	58.0			40.0		
4	85				58.8	92.0			20.0		
4	86				64.9	56.0			60.0		
4	87				64.6	54.0			60.0		
4	89				65.3	58.0			60.0		
4	90				60.0	76.0			40.0		
4	91				66.6	74.0			30.0		
4	92				61.5	76.0			20.0		
4	93				66.4	66.0			40.0		
4	95				68.1	40.0			100.0		
4	96				64.0	66.0			40.0		
4	102				65.0	50.0			80.0		
4	103				65.1	66.0			40.0		
4	105				63.1	46.0			90.0		
5	2				57.5	76.0			40.0		
5	6				63.2	99.0			20.0		
5	9				66.7	86.0			90.0		
5	10				65.6	100.0			10.0		
5	11				66.9	100.0			20.0		
5	13				64.1	100.0			20.0		
5	19				64.8	62.0			50.0		
5	20				65.9	96.0			40.0		
5	21				65.6	86.0			40.0		
5	22				57.5	24.0			120.0		
5	24				64.9	72.0			20.0		
5	25				64.3	96.0			20.0		<u>:</u>
5	28				61.3	92.0			40.0		
5	30				63.1	77.0			80.0		
5	31				65.5	98.0			30.0		
5	32				65.6	93.0			50.0		
5	33				62.4	60.0			70.0		
5	35				61.9	100.0			30.0		
5	36				72.7	80.0			80.0		<u>.</u>
5	41				64.6	62.0			100.0		·
5	42				61.7	67.0			140.0		· · · · · ·
5	44				68.3	62.0			100.0		<u>.</u>
5	47				67.0	56.0			120.0		
5	52				55.1	44.0			100.0		<u>.</u>
5	57			•	72.1	52.0	•		100.0	•	•
5	61			- 1	66.4	60.0	· ·	1	80.0	i i	<u> </u>
5	63			•	56.4	50.0	•		60.0	•	•
5	65			1	61.1	84.0	· ·	1	40.0	1	•
5	68		- 	1	59.8	82.0		1	20.0		<u> </u>
5	69			1	63.7	100.0	· ·	1	100.0	1	•
5	70	•		- 1	56.3	88.0	·	1	10.0	-	•
5	72			- 1	62.4	74.0	· ·	1	20.0	i i	<u> </u>
5	73			•	62.3	99.0	•		40.0	•	•
5	74	·	+	•	65.0	84.0	•	1	60.0	•	•
5	79			- 	61.1	82.0	•	1	40.0	· ·	•
5	80	·	+	•	64.7	80.0	•	1	80.0	•	•
5	81	•		•	71.1	69.0	•		130.0	•	•
5	83	•	+	•	69.5	54.0	•	1	70.0	•	•
5	85	•		•	60.1	64.0	•	-	60.0	•	•
5	86	•	+	•	66.0	54.0	-	1	100.0		•
5	87	•		•	64.3	52.0	•	-	60.0	•	•
5	89	•	- 		66.0	70.0	•		60.0	•	•
5	90	•		•	61.1	78.0	•	+	40.0	•	•
5	91			+	65.5	78.0	•	+	40.0		•
5	92	•	+	+	62.4	70.0		+	60.0	-	•
3	72	•	•	•	02.4	70.0		•	00.0	•	

AMB	ENT	ABMIX	TM	MAL	ABFA	WFA	TDFA	EFA	CF12	ALW	ALPL
5	93				67.7	50.0			90.0		
5	95				65.5	38.0			140.0		
5	96				63.8	68.0			60.0		
5	102				64.1	57.0			80.0		
5	103				63.2	68.0			40.0		
5	105				65.0	42.0			120.0		
6	2				59.6	97.0			20.0		
6	6				63.0	92.0			40.0		
6	9				63.7	90.0			80.0		
6	10				62.7	100.0			40.0		
6	11				63.2	100.0			40.0		
6	13				62.7	100.0			40.0		
6	19				62.6	100.0			40.0		
6	20				61.8	100.0			30.0		
6	21				62.7	94.0			40.0		
6	22				56.6	20.0			200.0		
6	24				61.9	78.0			40.0		
6	25				57.2	56.0			20.0		
6	28				56.0	84.0			20.0		
6	30				57.4	82.0			80.0		<u> </u>
6	31				61.7	100.0			20.0		
6	32				61.8	88.0			30.0		<u> </u>
6	33				51.7	74.0			30.0		
6	35				61.6	99.0			50.0		<u> </u>
6	36				70.3	84.0			50.0		<u> </u>
6	41				59.1	82.0			60.0		
6	42				62.0	80.0			70.0		
6	44				66.4	69.0			70.0		
6	47				62.3	72.0			60.0		
6	52				55.6	68.0			100.0		<u> </u>
6	57				61.9	68.0			60.0		
6	61				63.7	66.0			80.0		
6	63 65	•	-		56.8	88.0 78.0		-+	20.0		<u> </u>
6	68	•	•	•	69.0 60.1	100.0		+	30.0 20.0	•	<u> </u>
6	69	•	•	•	61.9	81.0			70.0		
6	70	•	•	•	54.3	97.0	•	-	20.0		
6	70		•	- 1	62.0	97.0	•	-	20.0		
6	73			-	58.8	83.0	•	•	40.0	•	
6	74	•	•	•	62.8	100.0	•	-	10.0		
6	79	•	•	•	58.3	72.0	•	-	50.0		
6	80		-		60.4	66.0		-	50.0		
6	81				64.6	62.0		1	100.0		
6	83	1			64.2	50.0			60.0		
6	85	.]			57.2	82.0			40.0		
6	86				62.9	50.0			60.0		
6	87				63.5	46.0			60.0		
6	89				60.9	80.0			30.0		
6	90				59.5	88.0			20.0		
6	91				63.0	81.0			10.0		
6	92				59.5	76.0			30.0		
6	93				65.2	63.0			30.0		
6	95				62.4	50.0			60.0		
6	96				62.3	62.0			70.0		
6	102				68.3	58.0			60.0		
6	103				60.7	71.0			40.0		
6	105				65.3	38.0			120.0		
7	2		4.5	6.6						844	1.00
7	6										_
7	9		3.5	6.9						492	0.50
7	10		5.0	6.5						674	0.70
7	11		5.3	6.0						664	0.60
7	13		6.0	6.0						1014	1.30

AMB	ENT	ABMIX	TM	MAL	ABFA	WFA	TDFA	EFA	CF12	ALW	ALPL
7	19		4.3	6.8						788	0.90
7	20		4.0	6.8						765	0.80
7	21		4.3	6.0						687	0.70
7	22										
7	24		2.5	6.6						490	0.70
7	25		4.5	6.5	•			•		948 602	1.20
7	28 30		2.5 3.7	6.5 6.3	•			•		628	1.00 2.00
7	31		3.8	6.8	•	•	•	•		870	1.00
7	32	·	4.3	6.3	•		•	•	•	739	1.00
7	33		3.6	6.0						503	0.50
7	35		4.6	5.7						605	0.90
7	36		2.2	7.0						700	0.90
7	41		2.7	6.0						409	1.20
7	42		3.7	6.7						667	1.50
7	44		2.4	6.5						369	1.20
7	47		2.2	6.1						437	0.90
7	52		1.8	5.0						229	0.70
7	57	·	1.9	5.8				-		281	1.10
7	61		2.5	6.5						517	1.10
7	63 65		3.0	6.5	•		•	•		523	0.60
7	68		4.2	6.4	•	•				916	1.00
7	69		3.7	6.0	•	•	•	•	•	710	1.00
7	70		3.0	5.0	•	•	•	•	•	605	0.90
7	72		3.5	6.0						847	1.10
7	73		4.0	5.8						553	0.80
7	74		3.0	6.0						631	1.00
7	79		4.5	6.0						687	0.80
7	80		2.9	5.8						379	0.60
7	81		2.5	5.9						366	1.40
7	83		2.0	7.0						235	0.90
7	85		5.7	6.0							
7	86		3.0	6.0						435	1.10
7	87 89	·	1.5 3.0	5.7 6.0	•	•		•		199 415	0.70 1.20
7	90		4.0	5.5	•	•	•	•	•	464	0.60
7	91		2.3	5.5	•			•	•	461	1.20
7	92		3.7	5.6						589	0.90
7	93		2.4	6.5						363	0.90
7	95		2.0	6.0						222	1.50
7	96		3.1	6.5						510	1.00
7	102		1.4	7.0						281	0.60
7	103		2.2	5.2						386	0.60
7	105		1.4	6.5						268	0.70
8	2		5.2	7.2						523	0.90
8	6		2.7	6.8						203	1.00
8	9 10		4.5 3.5	6.0 6.7	•	•	•	+		412 579	1.40 1.70
8	11	•	4.0	6.0		•	•	+		523	1.60
8	13		5.5	6.5	•	+	•	+	•	646	0.80
8	19		4.0	6.5	•	•	•	+	•	575	0.80
8	20		6.1	6.5				- :			0.00
8	21		7.7	6.0						530	1.90
8	22										
8	24										
8	25		5.2	6.5						543	1.30
8	28		3.0	6.9]					544	1.20
8	30		4.3	6.0						347	3.20
8	31		5.0	7.0				-		667	1.00
8	32		3.4	6.0	•	•		•		487	2.10
8	33 35		4.5 4.8	5.6 6.0	•	•	•	+		628	0.80
ď	35		4.ŏ	0.0						028	0.80

AMB	ENT	ABMIX	ТМ	MAL	ABFA	WFA	TDFA	EFA	CF12	ALW	ALPL
8	36		4.0	6.7						863	1.30
8	41		2.5	6.5						291	0.60
8	42		4.3	6.2						513	2.70
8	44		2.7	6.5						294	1.40
8	47		1.9	6.5						311	0.80
8	52		2.0	5.0						124	1.10
8	57		1.9	6.0						232	2.10
8	61		1.7	6.2						304 392	2.40
8	63 65	•	3.3	6.3				-		392	2.70 1.80
8	68	•	ა.ა	0.0		•	•		•	320	1.00
8	69	•	3.3	6.2		•	•	-	•	396	1.90
8	70		4.8	5.3						360	2.90
8	72										
8	73		3.8	5.5						624	1.30
8	74		2.8	6.7						494	1.00
8	79		4.0	6.2						435	2.00
8	80		2.6	6.5						255	0.70
8	81		2.5	5.8						176	2.40
8	83		3.2	6.5						245	1.60
8	85										4.00
8	86		3.5	5.7				-		239	1.90
8	87 89	•	2.0 4.0	5.5 6.2				•		183 317	1.00 1.70
8	89 90		3.8	5.7		•	•	-	•	353	0.70
8	90	•	3.0	3.7		•	•	-		303	0.70
8	92	•	4.4	6.0		•	•	-	•	396	2.10
8	93		3.4	6.6			•			301	1.70
8	95		2.2	6.0						131	2.30
8	96		3.0	6.0						252	1.40
8	102		1.8	6.4						163	0.60
8	103										
8	105		1.3	6.0						163	1.00
9	2		4.6	5.2						546	0.70
9	6		1.4	5.7							
9	9		2.9	6.5						347	0.80
9	10 11		3.6	6.3 6.1				•		549 556	1.00 0.70
9	13	•	3.0	0.1						330	0.70
9	19	•	3.0	6.2		•	•	-	•	523	0.80
9	20		4.0	6.4			•			615	0.80
9	21		4.5	5.6						644	0.80
9	22										
9	24										,
9	25		3.1	6.5						470	0.90
9	28		3.1	5.4						526	1.30
9	30		2.6	5.3						337	0.80
9	31		4.3	6.2							4 10
9	32 33		2.9	5.3 5.8						454 311	1.10
9	33 35	•	2.5 4.0	5.8		•	•			625	0.50
9	36	•	2.8	5.3		•	•	+	-	690	1.20
9	41	•	1.9	5.0			•			186	0.80
9	42		2.5	5.4						370	1.40
9	44										
9	47		1.1	5.5						193	0.80
9	52		1.2	5.0						131	0.60
9	57		1.4	5.8						190	1.50
9	61		1.3	5.5						219	1.00
9	63		1.8	4.5						219	0.70
9	65		2.2	5.2						307	0.90
9	68		4.0	4.5						438	1.40
9	69		2.4	4.9						298	1.00

AMB	ENT	ABMIX	TM	MAL	ABFA	WFA	TDFA	EFA	CF12	ALW	ALPL
9	70		2.5	4.0						376	1.20
9	72		2.9	5.8						365	1.50
9	73		3.5	4.0						479	1.10
9	74		2.6	5.3						463	1.60
9	79		4.0	4.5		-				504	1.10
9	80		2.0	5.3		-				294	0.80
9	81		1.7	6.0		•				137	2.00
9	83		1.7	5.7				•		232	1.20
9	85 86		2.0	6.0		•	•			233	2.60
9	87		1.4	5.0	•	· ·	•	•	•	160	1.30
9	89		2.0	5.4	•	•	•	•	•	266	1.20
9	90		3.0	4.8						272	0.70
9	91		2.3	6.0						417	2.00
9	92		2.7	5.4						356	0.90
9	93		2.2	6.0						249	1.30
9	95		1.4	4.8						112	0.80
9	96		2.0	5.7						299	0.80
9	102		1.2	6.0						159	0.60
9	103		1.8	5.5						360	1.20
9	105		0.7	5.0				-		129	1.00
10	2				61.0		13.0	19.0	0.0		
10	6										
10	9										
10	10										
10	11										
10	13										
10	19										
10	20				64.0		8.0	19.0	0.0		
10	21 22										
10	24					•	•	•		•	•
10	25				65.0	•	5.0	11.4	0.0	•	•
10	28		•	•	05.0	· ·	5.0	11.4	0.0	•	· · · ·
10	30		•	•		•	•			•	·
10	31										<u>.</u>
10	32										
10	33										
10	35				61.0		13.2	19.0	0.0		
10	36				72.0		7.0	17.0	0.0		
10	41				61.0		5.0	14.0	0.0		
10	42				64.0		9.2	13.3	0.0		
10	44				66.0		3.2	14.0	0.0		
10	47				66.0		6.4	10.2	0.0		
10	52				57.0		5.2	19.0	0.0		
10	57										
10	61				61.0		6.1	12.3	0.0		•
10 10	63 65				65.0		5.2	12.0	0.0		
10	68			-	•	+	•		•	•	•
10	69	•	•	•		•	•	•		•	•
10	70		•	•	62.0	•	8.3	18.0	0.0	•	•
10	70			•	02.0	•	0.3	10.0	0.0	·	•
10	73		•		·		·	1	·	·	•
10	74				64.0	1	11.0	20.0	0.0	•	•
10	79				64.0		3.4	12.2	0.0		
10	80				66.0		4.0	6.0	75.0		
10	81				68.0		2.4	3.2	119.0		
10	83				66.0		3.2	15.0	0.0		
10	85										
10	86				67.0		10.0	19.0	0.0		
10	87				64.0		4.0	15.0	0.0		
10	89				63.0		6.4	12.3	0.0		

AMB	ENT	ABMIX	TM	MAL	ABFA	WFA	TDFA	EFA	CF12	ALW	ALPL
10	90										
10	91 92				60.0		5.3	10.0	65.0		
10 10	92	•									
10	95	•	•	•	70.0	-	5.4	11.0	32.0	•	
10	96	•	•	•	66.0		7.0	12.0	0.0		
10	102		•	•	68.0		2.8	2.8	214.0		
10	103				65.0		5.0	7.2	52.0		
10	105				65.0		8.0	18.0	0.0		
11	2				80.0		8.5	23.6	0.0		
11	6										
11	9				90.0		7.9	11.8	92.0		
11	10										
11	11										
11	13				84.0		4.4	16.0	0.0		
11	19										
11	20				75.0		9.0	22.0	0.0		
11	21										
11 11	22	•			66.0	•	5.0	16.0	0.0		
11	24 25	•	•		68.0	•	5.0	11.0	39.0		
11	28	•	•	•	00.0	•	5.0	11.0	37.0		
11	30	•	•	·	75.0	•	13.0	18.0	0.0		
11	31										·
11	32										
11	33				67.0		4.0	16.0	0.0		
11	35				68.0		3.0	21.0	0.0		
11	36				89.0		9.3	17.0	0.0		
11	41				67.2		2.0	7.4	126.0		
11	42				48.3		5.0	12.0	80.0		
11	44				76.2		4.0	6.0	130.0		
11	47	-			71.0		4.0	7.0	138.0		
11 11	52 57				64.0 72.3	•	3.0 4.2	7.0 7.0	159.0 102.0		
11	61	-			80.0		7.0	17.0	0.0		
11	63	•	•	•	00.0		7.0	17.0	0.0		
11	65				<u> </u>		·				
11	68				67.0		3.3	2.1	0.0		
11	69				79.0		9.2	11.0	61.0		
11	70				73.0		5.0	20.0	0.0		
11	72				58.3		9.0		0.0		
11	73				69.0		6.0	14.0	0.0		
11	74				73.0		2.0	3.0	117.0		
11	79				74.0		3.0	3.0	122.0		-
11 11	80 81	•			71.0 75.0	•	4.0	4.3 4.0	141.0 172.0		
11	83		•		75.0	•	2.3	3.0	172.0		·
11	85 85	•	•	•	11.0		2.4	3.0	173.0		
11	86	•		·	77.0	1	4.0	6.0	119.0		
11	87				75.0		3.0	4.3	9.9		<u> </u>
11	89				77.0		3.0	3.0	150.0	i i	<u> </u>
11	90				79.0		4.0	6.0	145.0		
11	91										
11	92				73.0		6.3	7.2	36.0		
11	93				75.0		4.0	4.2	108.0		<u> </u>
11	95				79.0		3.0	4.3	174.0		<u> </u>
11	96				72.0		2.0	6.2	94.0		<u>.</u>
11	102				73.0		4.0	6.0	94.0		
11 11	103 105		•		72.0	-	3.0	4.0	150.0		
12	2	•	•		72.0	•	3.0	4.0	130.0	313	0.60
12	6	•	3.3	6.2		•				149	
12	9	•	ა.ა	0.2	•	1		-	•	307	
IZ	9		•							307	บ.ชบ

AMB	ENT	ABMIX	TM	MAL	ABFA	WFA	TDFA	EFA	CF12		ALPL
12	10		5.5	7.0						263	2.50
12	11		6.0	7.0						321	0.80
12	13		6.0	8.0						239	1.00
12	19		3.8	7.6						304	0.80
12	20									281	0.50
12	21		4.6	7.0						271	0.60
12	22								-	46	0.40
12	24		4.2	7.2						277	0.80
12	25 28	•	5.0	7.5						326	0.70
12 12	30	•	4.5	6.8						275	0.80
12	31	•	4.5	8.0			•		•	322	0.80
12	32		4.8	6.4	•	•	•		•	303	0.60
12	33	·	5.0	6.6			•		•	215	0.30
12	35	1	0.0	0.0	•	•	•			248	0.70
12	36										
12	41									189	0.60
12	42									262	0.60
12	44									282	0.90
12	47									188	2.80
12	52									92	4.00
12	57		2.2	7.0						188	1.30
12	61									211	0.90
12	63		4.8	7.0	-					214	0.40
12	65									241	0.80
12	68		5.2	7.4						326	1.20
12	69		5.0	6.9						262	0.80
12	70		4.8	6.0						156	0.60
12	72		5.5	7.2						261	0.60
12	73		5.0	6.9						408	0.60
12	74		4.5	7.7						309	0.90
12 12	79 80		2.F							202 199	0.60
12	81		2.5 2.8	8.0 7.0			•		•	168	0.40 0.50
12	83	•	1.8	8.0	•		•		•	156	0.30
12	85	•	5.8	6.5	•	•	•		•	288	1.10
12	86	·	3.0	7.4			•		•	224	1.00
12	87		1.8	6.8						131	1.30
12	89										
12	90									192	0.80
12	91										
12	92		3.0	7.6						251	1.10
12	93		2.5	8.2						319	1.00
12	95		2.3	6.6						123	1.80
12	96	7.	2.3	8.5						184	1.70
12	102										
12	103										
12	105									61	1.20
13	2		8.0	6.0						393	1.20
13	6		5.2	4.6						184	0.80
13	9	-	6.2	5.6						432	0.70
13	10	-	10.8	5.1						420	1 50
13	11 13		8.0 18.2	5.0 4.7	•					439 324	1.50
13 13	19	•	7.5	5.3					•	324	1.60 1.70
13	20		6.5	5.4	•				•	463	1.70
13	21	•	7.2	5.4	•		•		•	328	1.00
13	22	•	1.2	4.6	•		•	•	•	80	0.50
13	24	•	2.0	4.5				•	•	129	1.90
13	25	•	11.2	5.5	•		•		•	358	2.10
13	28	1	6.8	4.8	•		•		•	293	1.40
13	30	1	6.5	5.3	•		•		•	388	2.40
13	31		7.8	6.5	•	•	•		-	411	1.70
13	JI		7.0	0.0	•	•	•		•	411	1.70

AMB	ENT	ABMIX	TM	MAL	ABFA	WFA	TDFA	EFA	CF12	ALW	ALPL
13	32		9.2	4.9						230	2.20
13	33		6.0	5.0						156	1.40
13	35		7.5	6.0						319	2.30
13	36		5.8	7.1							
13	41		3.5	6.1						216	1.80
13	42		4.6	6.2						419	1.80
13	44		3.2	6.0						392	1.80
13	47		3.0	6.4						259	1.40
13	52		3.2	4.7						128	0.80
13	57		2.5	6.1						215	1.10
13	61		3.2	6.2						273	1.70
13	63		8.0	4.1						80	1.90
13	65		4.5	6.2						253	1.50
13	68		8.5	4.5						137	2.60
13	69		6.0	6.0						350	1.80
13	70		9.0	3.6						129	2.50
13	72		7.5	5.0						167	1.40
13	73		7.4	5.6						281	1.40
13	74		8.8	6.0							
13	79		5.0	5.8						394	1.00
13	80		2.5	6.8						241	0.70
13	81		3.5	5.2						218	1.50
13	83		2.0	6.2						127	1.40
13	85		8.0	5.4							
13	86		2.8	6.5						232	1.30
13	87		2.0	5.2						114	1.40
13	89		5.5	5.8						234	1.60
13	90		4.6	6.3						349	1.10
13	91		3.2	5.8						294	1.50
13	92		3.6	6.1						307	0.80
13	93		5.8	7.1						544	1.30
13	95		2.5	5.2						146	1.30
13	96		4.6	6.2						395	1.20
13	102		2.5	6.8						232	1.40
13	103		5.0	5.2						231	1.60
13	105		1.8	5.8						96	2.40

Cuadro 14 - Resultados de Falling Number

ENT	Amb #1	Amb #2	Amb #3	Amb #4	Amb #5	Amb #6	Amb #7	Amb #8	Amb #9	Amb #10	Amb #11	Amb #12
2	362	230	371	460	477	480	543	>600	418	526	404	419
6			380	450	488	400	374	538	230	298	597	360
9	381	339	428	411	427	399	322	391	340	408	243	374
10	389	476	337	495	513	402	335	>600	245	360	454	485
11	411	395	369	469	494	443	304	352	280	390	164	421
13	330	393	270	483	510	463	>600	1.	205	277	322	412
19	329	452	333	522	530	419	>600	568	380	320	337	441
20	362	364	323	560	560	505	>600	>600	528	398	418	416
21	348	372	337	500	526	422	504	515	180	235	449	386
22	311	436	380	475	481	439	449	454			374	325
24	373	363	331	541	562	436	292	159	220	199	394	457
25	361	483	312	498	429	430	472	452	598	547	294	410
28	375	349	348	485	505	429	539	>600	110	170	419	391
30	281	364	363	448	425	341	458	>600	380	481	357	358
31	338	358	291	542	564	471	423	>600	300	101	233	392
32	355	354	327	518	535	482	599	>600	1	<u> </u>	175	406
33	381	299	307	506	495	460	148	327	270	216	154	381
35	357	328	383	545	538	539	>600	>600	584	600	163	432
36	385	386	398	515	612	548	>600	>600	481	555	294	430
41	375	350	474	468	516	473	>600	>600	537	435	380	364
42	360	370	402	439	447	418	463	421	464	387	234	296
42 44	415	214	414	469	549	400	474	379	548	403	377	379
			428	449			>600					
47	413	298			498	326		270	483 359	335	426	387
52	391	320	405	489	443	451	>600	543		274	356	328
57	397	306	430	453	506	247	423	317	379	395	398	362
61	393	120	407	475	503	275	594	>600	544	362	317	335
63	344	218	309	468	462	425	564	395	499	469	253	362
65	376	296	390	448	494	436	574	>600	355	441	383	327
68	375	393	309	540	524	484	395	>600			516	365
69	470	379	410	495	394	351	399	469	228	227	533	395
70	320	325	252	471	600	350	285	382	516	370	356	313
72	389		357	575	555	402	155	232	127	191	221	381
73	374	351	252	506	484	264	507	547			129	344
74	421	430	341	612	537	451	>600	>600	545	428	269	425
79	502	355	376	515	500	454	417	390	502	405	431	347
80	376	99	338	446	425	371	209	282	308	261	348	359
81	383	185	425	450	423	387	578	450	432	132	211	375
83	381	64	366	484	578	278	482	346	673	533	376	363
85	388	117	232	541	531	436	156	569	378	439	421	421
86	413	227	420	492	523	461	595	>600	342	233	415	447
87	398	257	437	586	579	503	491	>600	438	243	446	376
89	369	133	379	373	236	259	297	247	464	444	338	326
90	408	267	425	541	520	302	272	159	90	274	508	311
91	400	396	323	610	586	495	577	493	264	158	360	369
92	357	389	399	514	496	411	464	582	320	496	578	363
93	424	193	515	525	572	490	402	411	290	273	598	372
95	416	204	460	485	582	195	574	482	480	360	359	393
96	432	166	462	536	500	374	274	360	484	285	429	416
102	399	275	347	435	505	457	>600	>600	507	376	324	366
103	388	376	401	441	493	433	>600	326	373	313	356	347
105	401	282	399	535	468	418	>600	292	528	487	416	357

Cuadro 15 - Volumen de pan (ml)

ENT	AMB #1	AMB #2	AMB #3	AMB #4	AMB #5	AMB #6	AMB #7	AMB #8	AMB #9
2	840	1040	830	940	575	795	880	880	935
6			915	920	635	860		820	
9	915	1040	780	825	625	910		810	735
10	900	915	785	830	630	810	915	800	860
11	875	955	900	855	610	790		830	860
13	945	1040	830	860	625	845	890		
19	845	930	870	855	675	925		870	815
20	605			910	860	935	870		
21	920	990	840	910	665	965			800
22	905	1005	830	730	475	530			
24	945	980	835	830	600	890			
25	875	940	980	845	635	820			835
28	900	1040	885	775	650	845			
30	850	900	860	815	600	765			690
31	905	1040	940	830	625	840			
32	825	985	905	895	685	905		840	
33	895	860	900	795	575	720			890
35	785	885	795	855	580	725			820
36	855	1025	880	1015	770	895	915		
41	800	920	820	995	620	830	770		750
42	850	855	825	825	665	835			765
44	705	840	860	820	580	840			
47	770	835	910	650	715	915			790
52	815	900	825	835	595	835	800		660
57	675	755	865	830	695	775	725	725	600
61	710	825	765	850	650	770	800	740	740
63	815	985	915	860	780	885			680
65	875		775	710	700	770		775	735
68	830	930	795	890	850	775			
69		925	860	870	855	820			690
70	805	845	760	820	825	825	800		785
72	965			850	875	880			
73	840	910	1005	875	840	835	810		820
74	925	850	740	885	825	800	850		835
79	865	1040	745	825	875	950	900		815
80	745	865	790	830	835	930	840	800	800
81	655	835	725	725	715	790	770		535
83	815	860	635	725	855	870	770	650	740
85	895			825	815	760			
86	775	870	725	755	730	775	830	670	450
87	615	695	630	770	735	825	710	670	650
89	705		760	795	745	820	800		785
90	890	840	770	800	810	840	800	770	800
91	930	975		940	980	1015			
92	830	940	755	770	855	770	860	1	760
93	775	915	720	885	810	863	800	1	700
95	630	725	730	710	695	740	700	510	460
96	935	960		930	920	975	850	725	725
102	860	965		855	840	945	860	825	730
103	865	1025	<u> </u>	935	950	995		,	
105	770			885	870	980	800	1	610

Cuadro 16 - Resultados de galletería

ENT	DIAMETRO	ALTO	LARGO	ASPECTO	COLOR	FACTOR	EVAL.
	1 GALLETA	4 GALLETAS	4 GALLETAS	EXTERIOR		GALLETA	GRAL.
Ambi	ente # 1						
20	6.4	4.4	25.2	Exc.	Café	5.7	MB
83	5.7	4.7	22.7	M	Café claro	4.8	R
87	5.7	5.1	23.0	M	Café claro	4.5	R
95	5.8	4.9	23.1	R-M	Café claro	4.7	R
102	5.9	5.7	23.2	R-B	Café claro	4.1	Pobre
103	5.8	4.9	22.8	R	Café claro	4.6	R
105	6.0	4.5	23.9	В	Café claro	5.3	В
Ambi	ente # 2	•					•
20	·				1 . 1	•	
83	5.2	4.6	20.7	R-M	Café claro	4.5	R
87	5.5	4.5	21.9	R	Crema	4.9	R
95	5.1	4.8	20.5	M	Crema	4.3	R
102	5.5	4.8	22.0	R	Café claro	4.6	R
103							
105	5.9	4.3	23.9	В	Café claro	5.5	В
Ambi	ente # 3						
20	6.3	3.9	25.1	Exc.	Café	6.4	Exc.
83	5.1	5.0	20.3	M	Café claro	4.1	Pobre
87	5.5	4.8	21.9	R-M	Café claro	4.6	R
95	5.0	4.7	20	R-M	Crema	4.2	Pobre
102	6.0	4.0	23.9	MB	Café claro	6.0	MB
103	5.1	4.8	20.5	M	Crema	4.3	Pobre
105	5.8	4.3	23.5	В	Café claro	5.5	В

Cuadro 17 - Porcentaje de proteína en grano

ENT	Amb #1	Amb #2	Amb #3	Amb #4	Amb #5	Amb #6	Amb #7
2	12.5	15.4	14.8	15.2	11.3	14.6	13.5
6			14.9	15.2	13.5	14.8	11.9
9	12.0	15.1	13.9	14.8	13.4	14.2	13.7
10	12.8	14.1	13.7	14.7	14.2	14.2	13.7
11	12.6	15.0	14.5	14.4	13.1	15.2	15.0
13	12.7	15.3	15.1	14.8	13.5	14.9	14.3
19	11.2	14.7	14.0	13.7	13.5	14.4	15.7
20	12.8	15.6	15.5	16.3	15.8	15.6	14.0
21	12.0	14.1	13.4	16.9	13.5	14.3	14.7
22	14.6	15.3	15.3	13.5	14.8	15.2	15.0
24	12.8	14.9	14.2	13.7	13.4	13.2	14.8
25	12.4	14.4	14.2	13.5	12.5	11.4	15.0
28	13.0	14.6	13.7	14.1	12.7	13.0	13.9
30	11.6	14.2	14.8	14.6	12.5	14.8	12.9
31	12.5	15.1	14.2	14.3	13.1	14.1	14.2
32	12.4	14.3	13.3	15.5	12.7	14.1	14.4
33	11.5	14.1	13.1	15.9	11.2	11.8	13.3
35	11.3	15.2	14.9	15.6	15.0	15.2	13.7
36	13.6	15.7	16.6	15.3	12.0	16.6	15.0
41	11.2	13.8	15.3	16.9	12.6	13.4	12.3
42	11.5	14.0	14.5	13.0	12.6	13.4	12.6
44	11.3	14.1	15.1	12.8	14.8	13.5	12.4
47	12.5	14.0	15.3	11.2	13.4	13.7	12.7
52	11.5	15.3	14.8	11.8	13.5	14.4	14.0
57	11.3	14.0	14.4	13.2	12.7	12.6	12.3
61	10.9	13.7	14.8	13.1	12.2	14.2	13.1
63	11.1	14.0	13.1	12.5	12.2	14.3	15.6
65	12.1	15.5	13.4	13.4	12.7	14.1	15.2
68	11.9	15.5	13.1	15.9	13.6	14.6	14.9
69	11.7	14.7	15.3	15.7	13.5	13.9	12.9
70	10.8	14.5	14.3	15.2	12.6	13.3	13.3
72	12.6		14.3	14.2	12.5	13.6	15.3

ENT	Amb #1	Amb #2	Amb #3	Amb #4	Amb #5	Amb #6	Amb #7
73	11.3	14.7	14.8	13.6	12.8	12.9	12.6
74	14.5	15.4	13.8	15.5	14.0	14.8	13.9
79	11.9	14.1	16.5	13.2	14.1	13.7	13.3
80	11.5	14.3	14.5	13.5	11.8	13.0	12.4
81	10.8	13.6	13.9	12.4	11.9	12.0	12.0
83	11.2	13.9	13.9	14.1	13.2	12.6	12.2
85	11.7	16.1	16.3	13.2	13.4	12.5	16.3
86	11.0	13.2	13.3	11.8	12.1	11.9	12.5
87	12.9	14.5	13.9	13.6	13.7	14.1	12.5
89	11.3	13.4	13.4	13.5	12.0	12.3	12.9
90	11.9	13.2	14.7	16.5	14.2	13.3	13.0
91	14.6	16.6	14.4	13.3	14.0	13.8	16.0
92	11.8	14.2	16.0	13.5	12.7	13.8	13.3
93	11.6	13.9	15.2	11.6	14.1	12.6	12.9
95	11.0	13.8	16.4	13.7	14.9	12.3	12.1
96	14.0	15.6	18.1	14.5	14.4	14.6	12.9
102	15.8	15.7	15.1	17.3	15.9	16.2	15.4
103	14.0	15.0	14.2	16.4	16.0	14.1	16.0
105	14.2	15.8	16.4	15.8	13.3	15.3	13.8

Cuadro 17. (continuación)

ENT	Amb #8	Amb #9	Amb #12	Amb #13	PROMEDIO
2	13.3	13.0	13.5	15.2	13.8
6	12.7	13.0	13.3	13.4	13.6
9	11.9	12.2	13.7	14.0	13.5
10	12.5	11.9	13.2	14.0	13.5
11	13.7	12.7	13.1	14.9	14.0
13	12.8		13.6	14.3	14.1
19	12.9	11.6	13.9	14.6	13.7
20	12.6	12.3	18.1	16.3	15.0
21	12.8	12.7	13.2	14.7	13.8
22	10.7	11.9	13.6	13.2	13.9
24	12.5	14.5	13.6	14.1	13.8
25	11.6	12.3	12.8	14.4	13.1
28	13.0	12.5	12.5	14.3	13.4
30	11.4	11.6	12.9	13.6	13.2
31	13.0	13.4	14.4	14.3	13.9
32	12.5	12.7	12.5	14.7	13.6
33	11.1	12.7	13.6	13.4	12.9
35	13.7	13.1	13.8	15.0	14.2
36	14.5	14.0	14.1	16.8	14.9
41	12.9	12.1	13.4	14.5	13.5
42	11.8	11.9	12.8	14.9	13.0
44	12.4	11.5	12.9	15.3	13.3
47	12.2	12.3	14.1	15.2	13.3
52	11.4	12.3	14.3	14.2	13.4
57	11.7	11.4	11.7	14.0	12.7
61	13.0	12.4	13.0	14.8	13.2
63	11.7	12.4	13.1	12.2	12.9
65	11.4	12.0	13.1	13.8	13.3
68	12.6	12.7	13.3	13.6	13.8
69	11.8	11.9	12.9	14.6	13.5
70	12.1	12.7	11.6	11.9	12.9
72	11.8	13.0	13.2	13.9	13.4
73	12.8	12.4	13.0	14.0	13.2
74	13.2	13.0	13.2	15.1	14.2
79	12.6	12.3	13.5	15.4	13.7
80	12.4	11.8	12.0	15.3	13.0
81	11.2	11.1	12.6	15.3	12.4
83	12.4	12.1	11.9	13.9	12.9
85	13.6	13.6	11.2	15.9	14.0
86	11.2	10.8	13.1	13.5	12.2
87	12.1	12.1	12.5	13.7	13.2

ENT	Amb #8	Amb #9	Amb #12	Amb #13	PROMEDIO
89	11.7	11.9	11.8	13.4	12.5
90	11.6	12.0	12.3	15.7	13.5
91	13.0	14.0	14.1	15.4	14.5
92	12.4	12.5	13.1	15.6	13.5
93	12.0	11.8	12.2	15.6	13.0
95	11.8	10.8	11.6	13.4	12.9
96	11.5	12.2	13.6	16.0	14.3
102	14.0	14.2	15.1	18.3	15.7
103	13.1	13.2	14.3	15.8	14.7
105	13.8	13.4	14.4	16.7	14.8

Cuadro 18 - Valores de W de alveograma (fuerza panadera, j/10000)

ENT	Amb #1	Amb #2	Amb #3	Amb #7	Amb #8	Amb #9	Amb#12	Amb#13	PROMEDIO
2	353	426	447	844	523	546	313	393	524
6					203		149	184	179
9	265	437	469	492	412	347	307	432	398
10	409	345		674	579	549	263		516
11	355	541	402	664	523	556	321	439	501
13	354	357		1014	646		239	324	556
19	271	327	376	788	575	523	304	389	516
20	68	55	73	765		615	281	463	531
21	280	435	363	687	530	644	271	328	492
22	373	556	445				46	80	63
24	299	518	447	490			277	129	299
25	357	369	494	948	543	470	326	358	529
28	264	463	324	602	544	526	275	293	448
30	183	467	413	628	347	337		388	425
31	288	496		870	667		322	411	568
32	214	387	299	739	487	454	303	230	443
33	188	298	292	503		311	215	156	296
35	259	439		605	628	625	248	319	485
36	420	557	341	700	863	690			751
41	174	284	323	409	291	186	189	216	258
42	181	337	414	667	513	370	262	419	446
44	166	301	386	369	294		282	392	334
47	138	261	321	437	311	193	188	259	278
52	146	153	217	229	124	131	92	128	141
57	97	249	353	281	232	190	188	215	221
61	180	217	357	517	304	219	211	273	305
63	184	339	258	523	392	219	214	80	286
65					320	307	241	253	280
68	244	413	338	916		438	326	137	454
69	245	352	442		396	298	262	350	327
70	124	214	235	605	360	376	156	129	325
72	316		394	847		365	261	167	410
73	225	361	307	553	624	479	408	281	469
74	337	509	398	631	494	463	309		474
79	208	462	435	687	435	504	202	394	444
80	172	242	406	379	255	294	199	241	274
81		253	295	366	176	137	168	218	213
83	207	173	229	235	245	232	156	127	199
85	186		371				288		288
86	125	269	316	435	239	233	224	232	273
87	133	130	164	199	183	160	131	114	157
89			273	415	317	266		234	308
90	199	282	301	464	353	272	192	349	326
91	332	294	396	461		417		294	391
92	251	343	394	589	396	356	251	307	380
93			301	363	301	249	319	544	355
95	105		188	222	131	112	123	146	147
96				510	252	299	184	395	328
102	216	145	145	281	163	159		232	209
103	218	266		386		360		231	326
105	109	117	112	268	163	129	61	96	143

Cuadro 9 - Relación tenacidad/extensibilidad del alveograma (P/L)

2 0.67 0.79 6 . . 9 0.74 0.66 10 1.45 1.22 11 1.24 0.92 13 1.14 0.92 19 0.89 0.51 20 0.46 0.39 21 0.58 0.95 22 0.73 0.71 24 0.56 0.73 25 0.86 0.37 28 0.56 0.61 30 0.61 0.85 31 0.61 0.86 32 0.63 0.50 33 0.42 0.25 35 0.73 0.92 36 0.98 0.85 41 0.61 0.36 42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 <t< th=""><th>1.65 1.71 0.88 0.71 0.78 1.03 1.32 0.92 0.47 1.18</th><th>1.00 0.50 0.70 0.60 1.30 0.90 0.80 0.70 1.20 1.00 2.00 1.00</th><th>0.90 1.00 1.40 1.70 1.60 0.80 0.80 1.90</th><th>0.70 0.80 1.00 0.70 0.80 0.80 0.80 </th><th>0.60 0.40 0.80 2.50 0.80 1.00 0.80 0.50 0.60 0.40</th><th>1.20 0.80 0.70 1.50 1.60 1.70 1.00 0.50</th><th>0.88 0.73 0.91 1.43 1.13 0.91 0.67 0.91</th></t<>	1.65 1.71 0.88 0.71 0.78 1.03 1.32 0.92 0.47 1.18	1.00 0.50 0.70 0.60 1.30 0.90 0.80 0.70 1.20 1.00 2.00 1.00	0.90 1.00 1.40 1.70 1.60 0.80 0.80 1.90	0.70 0.80 1.00 0.70 0.80 0.80 0.80 	0.60 0.40 0.80 2.50 0.80 1.00 0.80 0.50 0.60 0.40	1.20 0.80 0.70 1.50 1.60 1.70 1.00 0.50	0.88 0.73 0.91 1.43 1.13 0.91 0.67 0.91
9 0.74 0.66 10 1.45 1.22 11 1.24 0.92 13 1.14 0.92 19 0.89 0.51 20 0.46 0.39 21 0.58 0.95 22 0.73 0.71 24 0.56 0.73 25 0.86 0.37 28 0.56 0.61 30 0.61 0.85 31 0.61 0.86 32 0.63 0.50 33 0.42 0.25 35 0.73 0.92 36 0.98 0.85 41 0.61 0.36 42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39		0.70 0.60 1.30 0.90 0.80 0.70 0.70 1.20 1.00 2.00	1.40 1.70 1.60 0.80 0.80 1.90 1.30	1.00 0.70 0.80 0.80 0.80	0.80 2.50 0.80 1.00 0.80 0.50 0.60	0.70 1.50 1.60 1.70 1.00 1.00 0.50	0.91 1.43 1.13 1.13 0.91 0.67 0.91
10 1.45 1.22 11 1.24 0.92 13 1.14 0.92 19 0.89 0.51 20 0.46 0.39 21 0.58 0.95 22 0.73 0.71 24 0.56 0.73 25 0.86 0.37 28 0.56 0.61 30 0.61 0.85 31 0.61 0.86 32 0.63 0.50 33 0.42 0.25 35 0.73 0.92 35 0.73 0.95 41 0.61 0.36 42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 .		0.70 0.60 1.30 0.90 0.80 0.70 0.70 1.20 1.00 2.00	1.70 1.60 0.80 0.80 1.90 1.30	1.00 0.70 0.80 0.80 0.80	2.50 0.80 1.00 0.80 0.50 0.60 0.40	1.50 1.60 1.70 1.00 1.00 0.50	1.43 1.13 1.13 0.91 0.67 0.91
11 1.24 0.92 13 1.14 0.92 19 0.89 0.51 20 0.46 0.39 21 0.58 0.95 22 0.73 0.71 24 0.56 0.73 25 0.86 0.37 28 0.56 0.61 30 0.61 0.85 31 0.61 0.86 32 0.63 0.50 33 0.42 0.25 35 0.73 0.92 36 0.98 0.85 41 0.61 0.36 42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .	1.71 0.88 0.71 0.78 1.03 1.32 0.92 0.47 1.18 0.86 0.54	0.60 1.30 0.90 0.80 0.70 0.70 1.20 1.00 2.00	1.60 0.80 0.80 1.90 1.30	0.70 0.80 0.80 0.80	0.80 1.00 0.80 0.50 0.60 0.40	1.60 1.70 1.00 1.00 0.50	1.13 1.13 0.91 0.67 0.91
13 1.14 0.92 19 0.89 0.51 20 0.46 0.39 21 0.58 0.95 22 0.73 0.71 24 0.56 0.73 25 0.86 0.37 28 0.56 0.61 30 0.61 0.85 31 0.61 0.86 32 0.63 0.50 33 0.42 0.25 35 0.73 0.92 36 0.98 0.85 41 0.61 0.36 42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .	0.88 0.71 0.78 1.03 1.32 0.92 0.47 1.18 0.86	1.30 0.90 0.80 0.70 0.70 1.20 1.00 2.00	0.80 0.80 1.90 1.30 1.20	0.80 0.80 0.80	1.00 0.80 0.50 0.60 0.40	1.60 1.70 1.00 1.00 0.50	1.13 0.91 0.67 0.91
19 0.89 0.51 20 0.46 0.39 21 0.58 0.95 22 0.73 0.71 24 0.56 0.73 25 0.86 0.37 28 0.56 0.61 30 0.61 0.85 31 0.61 0.86 32 0.63 0.50 33 0.42 0.25 35 0.73 0.92 36 0.98 0.85 41 0.61 0.36 42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .	0.88 0.71 0.78 1.03 1.32 0.92 0.47 1.18 	0.90 0.80 0.70 0.70 1.20 1.00 2.00	0.80 1.90	0.80 0.80	0.80 0.50 0.60 0.40	1.70 1.00 1.00 0.50	0.91 0.67 0.91
20 0.46 0.39 21 0.58 0.95 22 0.73 0.71 24 0.56 0.73 25 0.86 0.37 28 0.56 0.61 30 0.61 0.85 31 0.61 0.86 32 0.63 0.50 33 0.42 0.25 35 0.73 0.92 36 0.98 0.85 41 0.61 0.36 42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .	0.71 0.78 1.03 1.32 0.92 0.47 1.18 0.86 0.54	0.80 0.70 0.70 1.20 1.00 2.00	1.90	0.80 0.80	0.50 0.60 0.40	1.00 1.00 0.50	0.67 0.91
21 0.58 0.95 22 0.73 0.71 24 0.56 0.73 25 0.86 0.37 28 0.56 0.61 30 0.61 0.85 31 0.61 0.86 32 0.63 0.50 33 0.42 0.25 35 0.73 0.92 36 0.98 0.85 41 0.61 0.36 42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .	0.78 1.03 1.32 0.92 0.47 1.18 0.86	0.70 0.70 1.20 1.00 2.00	1.30 1.20	0.80	0.60 0.40	1.00 0.50	0.91
22 0.73 0.71 24 0.56 0.73 25 0.86 0.37 28 0.56 0.61 30 0.61 0.85 31 0.61 0.86 32 0.63 0.50 33 0.42 0.25 35 0.73 0.92 36 0.98 0.85 41 0.61 0.36 42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .	1.03 1.32 0.92 0.47 1.18 0.86 0.54	0.70 1.20 1.00 2.00	1.30 1.20		0.40	0.50	
24 0.56 0.73 25 0.86 0.37 28 0.56 0.61 30 0.61 0.85 31 0.61 0.86 32 0.63 0.50 33 0.42 0.25 35 0.73 0.92 36 0.98 0.85 41 0.61 0.36 42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .	1.32 0.92 0.47 1.18 0.86 0.54	1.20 1.00 2.00	1.20				0.47
25 0.86 0.37 28 0.56 0.61 30 0.61 0.85 31 0.61 0.86 32 0.63 0.50 33 0.42 0.25 35 0.73 0.92 36 0.98 0.85 41 0.61 0.36 42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21	0.92 0.47 1.18 0.86 0.54	1.20 1.00 2.00	1.20	. 0.00	0.80		0.07
28 0.56 0.61 30 0.61 0.85 31 0.61 0.86 32 0.63 0.50 33 0.42 0.25 35 0.73 0.92 36 0.98 0.85 41 0.61 0.36 42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .	0.47 1.18 0.86 0.54	1.00 2.00	1.20	0.00		1.90	1.00
30 0.61 0.85 31 0.61 0.86 32 0.63 0.50 33 0.42 0.25 35 0.73 0.92 36 0.98 0.85 41 0.61 0.36 42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .	1.18 0.86 0.54	2.00		0.70	0.70	2.10	1.04
31 0.61 0.86 32 0.63 0.50 33 0.42 0.25 35 0.73 0.92 36 0.98 0.85 41 0.61 0.36 42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .	0.86 0.54		2 22	1.30	0.80	1.40	0.92
32 0.63 0.50 33 0.42 0.25 35 0.73 0.92 36 0.98 0.85 41 0.61 0.36 42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .	0.86 0.54	1.00	3.20	0.80		2.40	1.58
33 0.42 0.25 35 0.73 0.92 36 0.98 0.85 41 0.61 0.36 42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .	0.54		1.00		0.80	1.70	1.00
35 0.73 0.92 36 0.98 0.85 41 0.61 0.36 42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .		1.00	2.10	1.10	0.60	2.20	1.12
36 0.98 0.85 41 0.61 0.36 42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .		0.50		0.50	0.30	1.40	0.56
41 0.61 0.36 42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .		0.90	0.80	0.90	0.70	2.30	1.04
42 0.53 0.75 44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .		0.90	1.30	1.20			1.14
44 1.06 0.54 47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .		1.20	0.60	0.80	0.60	1.80	0.86
47 0.51 0.39 52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .		1.50	2.70	1.40	0.60	1.80	1.35
52 0.33 0.26 57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .		1.20	1.40		0.90	1.80	1.17
57 0.73 0.54 61 0.90 0.41 63 0.39 0.21 65 . .		0.90	0.80	0.80	2.80	1.40	1.08
61 0.90 0.41 63 0.39 0.21 65 . .		0.70	1.10	0.60	4.00	0.80	1.02
63 0.39 0.21 65		1.10	2.10	1.50	1.30	1.10	1.21
65		1.10	2.40	1.00	0.90	1.70	1.23
	0.41	0.60	2.70	0.70	0.40	1.90	0.91
l 68 1 0.561 0.47			1.80	0.90	0.80	1.50	1.25
	1.17	1.00		1.40	1.20	2.60	1.20
69 0.64 0.42			1.90	1.00	0.80	1.80	1.08
70 0.57 0.32		0.90	2.90	1.20	0.60	2.50	1.18
72 0.67 .	0.92	1.10		1.50	0.60	1.40	1.03
73 0.60 0.37	0.60	0.80	1.30	1.10	0.60	1.40	0.85
74 0.54 0.81	1.79	1.00	1.00	1.60	0.90		1.09
79 0.45 0.71		0.80	2.00	1.10	0.60	1.00	0.96
80 0.56 0.26		0.60	0.70	0.80	0.40	0.70	0.63
81 . 0.65		1.40	2.40	2.00	0.50	1.50	1.39
83 0.59 0.24 85 0.44 .	1.15 0.72	0.90	1.60	1.20	0.70	1.40	0.97
	1	1.10	1.90	2 40	1.10 1.00	1.30	0.75
86 0.50 0.49 87 0.49 0.45			1.90	2.60			1.24
87 0.49 0.45 89	1.15 1.32	0.70 1.20		1.30 1.20	1.30	1.40 1.60	0.97 1.40
			1.70 0.70		0.80	1.00	
90 0.41 0.60 91 0.91 0.67		0.60 1.20	0.70	0.70 2.00	0.80	1.10	0.71 1.18
92 0.63 0.75		0.90	2.10	0.90	1.10	0.80	1.18
93	1.10	0.90	1.70	1.30	1.10	1.30	1.04
95 0.72 .	1.04	1.50	2.30	0.80	1.80	1.30	1.24
96	1.04	1.00	1.40	0.80	1.70	1.20	1.33
102 0.32 0.48		0.60	0.60	0.60	1.70	1.40	0.64
102 0.52 0.46 103 0.55 0.55	0.50	0.60	0.00	1.20	•	1.60	0.90
105 0.65 0.35		0.70	1.00	1.00	1.20	2.40	1.00

Cuadro 20 - Absorción de agua farinográfica (%)

ENT	Amb #1	Amb #2	Amb #3	Amb #4	Amb #5	Amb #6	Amb#10	Amb #11	PROMEDIO
2	57.9	59.8	60.9	57.2	57.5	59.6	61.0	80.0	58.8
6			58.6	62.7	63.2	63.0			61.9
9	61.0	65.7	65.5	61.9	66.7	63.7		90.0	64.1
10	63.7	62.7	59.6	62.1	65.6	62.7			62.7
11	63.8	67.3	61.8	65.9	66.9	63.2			64.8
13	60.8	63.4	60.2	61.1	64.1	62.7		84.0	62.1
19	59.8	62.4	61.6	59.9	64.8	62.6			61.9
20	57.8		57.2	66.8	65.9	61.8	64.0	75.0	61.9
21	60.8	62.4	58.2	65.0	65.6	62.7			62.5
22	64.5	64.6	64.8	63.9	57.5	56.6			62.0
24	63.5	64.8	63.1	65.6	64.9	61.9		66.0	64.0
25	61.5	62.0	59.4	61.8	64.3	57.2	65.0	68.0	61.0
28	61.6	63.3	59.3	69.0	61.3	56.0			61.8
30	60.9	63.1	63.7	62.3	63.1	57.4		75.0	61.8
31	64.8	67.1	62.2	65.1	65.5	61.7			64.4
32	64.0	62.9	60.5	65.7	65.6	61.8			63.4
33	60.0	60.6	57.0	64.3	62.4	51.7		67.0	59.3
35	60.3	63.0	61.7	61.5	61.9	61.6	61.0	68.0	61.7
36	66.0	70.7	63.3	64.8	72.7	70.3	72.0	89.0	68.0
41	57.2	61.6	66.7	64.1	64.6	59.1	61.0	67.2	62.2
42	59.0		62.5	64.7	61.7	62.0	64.0	48.3	62.0
44	62.1	65.4	68.2	65.6	68.3	66.4	66.0	76.2	66.0
47	62.1	64.0	68.0	66.8	67.0	62.3	66.0	71.0	65.0
52	55.8	59.0	58.3	57.4	55.1	55.6	57.0	64.0	56.9
57	61.6	65.0	70.8	68.3	72.1	61.9		72.3	66.6
61	60.9	61.8	67.0	64.6	66.4	63.7	61.0	80.0	64.1
63	53.3	54.9	53.1	57.9	56.4	56.8	65.0		55.4
65	57.3	59.7	61.9	60.6	61.1	69.0			61.6
68	58.8	61.5	56.1	66.0	59.8	60.1		67.0	60.4
69	59.2	63.1	65.0	66.0	63.7	61.9		79.0	63.2
70	51.0	56.5	53.1	55.3	56.3	54.3	62.0	73.0	54.4
72	60.3			63.9	62.4	62.0		58.3	62.2
73	55.6	60.4	57.1	60.3	62.3	58.8		69.0	59.1
74	63.7	65.4	58.3	65.5	65.0	62.8	64.0	73.0	63.5
79	57.6	63.0	64.1	63.7	61.1	58.3	64.0	74.0	61.3
80	58.5	61.6	67.1	64.6	64.7	60.4	66.0	71.0	62.8
81	59.5	63.5	66.8	66.3	71.1	64.6	68.0	75.0	65.3
83	57.8	61.5	68.7	64.5	69.5	64.2	66.0	77.0	64.4
85	55.1			58.8	60.1	57.2			57.8
86	59.0	63.2	66.4	64.9	66.0	62.9	67.0	77.0	63.7
87	61.8	62.6	64.9	64.6	64.3	63.5	64.0	75.0	63.6
89	56.9	62.0	64.2	65.3	66.0	60.9	63.0	77.0	62.6
90	56.2	59.7	60.9	60.0	61.1	59.5		79.0	59.6
91	65.1	66.2		66.6	65.5	63.0	60.0		65.3
92	60.2	63.8	65.0	61.5	62.4	59.5		73.0	62.1
93	59.8	65.2	69.0	66.4	67.7	65.2		75.0	65.6
95	58.6	62.5	65.2	68.1	65.5	62.4	70.0	79.0	63.7
96	61.7	63.9		64.0	63.8	62.3	66.0	72.0	63.1
102	63.3	62.1	61.7	65.0	64.1	68.3	68.0	73.0	64.1
103	62.6	63.4	64.5	65.1	63.2	60.7	65.0		63.3
105	60.4	61.0	63.1	63.1	65.0	65.3	65.0	72.0	63.0

Cuadro 21 - Estabilidad farinográfica al mezclado (min)

ENT	Amb #1	Amb #2	Amb #3	Amb #10	Amb #11	PROMEDIO
2	13.7	35.5	22.8	19.0	23.6	24.0
6			7.4			7.4
9	8.9	13.2	10.9		11.8	11.0
10	12.2	31.4	28.7			24.1
11	13.2	21.0	18.5			17.6
13	9.2	35.1	57.8		16.0	34.0
19	8.7	21.2	12.3			14.1
20	1.4		1.5	19.0	22.0	1.5
21	9.9	28.1	12.5			16.8
22	10.7	44.0	14.6			23.1
24	8.7	27.3	14.1		16.0	16.7
25	11.1	22.3	38.5	11.4	11.0	24.0
28	10.0	28.6	12.5			17.0
30	8.0	11.0	9.4		18.0	9.5
31	9.1	22.8	30.9			20.9
32	6.2	21.6	10.7			12.8
33	6.4	12.4	10.4		16.0	9.7
35	8.5	28.7	24.1	19.0	21.0	20.4
36	12.2	18.0	8.6	17.0	17.0	12.9
41	7.4	13.7	7.5	14.0	7.4	9.5
42	6.8		8.1	13.3	12.0	7.5
44	7.5	11.1	6.8	14.0	6.0	8.5
47	2.7	7.7	4.9	10.2	7.0	5.1
52	6.4	4.8	4.7	19.0	7.0	5.3
57	3.4	9.1	5.7		7.0	6.1
61	7.7	6.8	5.8	12.3	17.0	6.8
63	7.1	11.0	11.9	12.0		10.0
65	7.3	22.0	16.0	•	. 2.1	15.1
68	7.6	33.6	15.4	•	2.1	18.9
69	9.2	11.4	9.9	10.0	11.0	10.2
70	6.1	13.7	13.6	18.0	20.0	11.1
72 73	9.7 9.6	20.8	15.9	•	13.0 14.0	9.7 15.4
74	9.6 8.2	20.8	24.2	20.0	3.0	17.8
79	7.0	15.8	10.2	12.2	3.0	11.0
80	5.0	6.4	9.7	6.0	4.3	7.0
81	5.8	9.3	5.7	3.2	4.0	6.9
83	8.7	4.2	5.7	15.0	3.0	6.2
85	8.0	4.2	3.7	13.0	3.0	8.0
86	4.0	6.4	7.6	19.0	6.0	6.0
87	2.8	4.3	3.8	15.0	4.3	3.6
89	4.9	7.0	8.3	12.3	3.0	6.7
90	6.3	15.1	14.4	12.0	6.0	11.9
91	10.9	11.0	17.7	10.0	0.0	11.0
92	7.6	12.3	8.0	10.0	7.2	9.3
93	3.9	6.4	7.8	•	4.2	6.0
95	3.2	7.5	3.6	11.0	4.3	4.8
96	7.0	12.4	5.0	12.0	6.2	9.7
102	7.9	7.4	6.2	2.8	6.0	7.2
103	7.2	11.9	8.2	7.2	3.0	9.1
105	8.2	2.5	2.4	18.0	4.0	4.4

Cuadro 22 - Promedio en cada ambiente de los parámetros más relevantes

	Amb #1	Amb #2	Amb #3	Amb #4	Amb #5	Amb #6	Amb #7
PRG	12.2	14.6	14.6	14.3	13.3	13.9	13.8
ALW	232	336	331				549
ALPL	0.66	0.58	1.02				0.95
ABFA	60.1	62.8	62.5	63.6	64.0	61.4	
EFA	7.7	16.3	12.7				

	Amb #8	Amb #9	Amb #10	Amb #11	Amb #12	Amb #13	PROMEDIO
PRG	12.4	12.4			13.2	14.6	13.8
ALW	389	355			234	272	362
ALPL	1.54	1.08			0.96	1.50	0.80
ABFA			64.5	73.2			62.4
EFA			13.4	9.8			12.2

2.2. Análisis estadístico de los experimentos de calidad

Estimación de componentes de varianza

Los Cuadros que se presentan a continuación contienen las estimaciones de los componente de varianza para AMBIENTE, GENOTIPO y para la interacción GENOTIPO X AMBIENTE.

Los resultados para cada país muestran que muchas variables tienen una interacción muy alta, aunque algunas no. Así mismo, para algunas variables el efecto ambiental casi es imperceptible, mientras que otras variables están altamente afectadas por el ambiente.

Análisis de componentes principales

Este análisis simplifica la variabilidad existente en un conjunto de datos, de tal manera que luego de realizado el PCA toda la variabilidad original se resume en pocos ejes principales (PCA1, PCA2), los que se grafican en las figuras llamadas biplots presentados en la **Figura 1**. Estos biplots se interpretan por direcciones y por proyecciones y ofrecen al investigador la posibilidad de estudiar las relaciones entre las variables, así como las asociaciones entre variables y genotipos.

Para estos análisis, el total de variables se agruparon en dos subconjuntos (variables 1 y variables 2), de acuerdo a las características de las variables en consideración: las variables del subset 1 corresponden a características físicas y las del subset 2 a las relacionadas con fuerza de gluten.

Por ejemplo, para el caso de Argentina en el conjunto 1 de variables es claro que las variables FN1 y ABFA están altamente relacionadas, o sea que su correlación debe ser alta y positiva. A su vez, los genotipos 11 y 74 están en la misma dirección de estas variables y deben de tener, en general, un valor alto para estas variables. Por otra parte, los genotipos que están en la dirección opuesta a la dirección de estas variables (en el extremo opuesto del biplot), como los genotipos 63 y 70, deben de tener valores bajos de respuesta para las variables FN1 y ABFA.

SREG a través de sitios y países

El modelo SREG permite estudiar la interacción genotipo x ambiente y permite observar en el biplot el comportamiento de ambientes similares, así como el comportamiento de genotipos similares y de su respuesta a través de ambientes. El juego completo de figuras no se presenta por su extensión (más de 80 páginas), pero el informe completo se presenta como adjunto.

Como ejemplo, se presenta el biplot para la variable ABFA (absorción de agua del farinograma) en la **Figura 2**. Para esta variable, los ambientes A11 y C16 por un lado, y los C14 y A8 por otro, son pares de ambientes que en este análisis salen similares, o sea que estos pares de ambientes similares discriminan los genotipos en forma similar. A su vez, el P6 es un ambiente muy diferente a los demás que produce mucha interacción.

Con respecto a los genotipos, se puede concluir que el genotipo 36 tiene una buena respuesta en P6 y que el genotipo 52, que esta del otro lado del biplot, tiene una respuesta baja en casi todos los ambientes.

Los genotipos que están más cerca del centro del biplot son los que tienen una respuesta más estable en todos los ambientes, aunque su respuesta no es sobresaliente en ninguno de ellos.

Cuadro 23 - Componentes de Varianza

ARGENTINA

Variables

	ABFA	ABMIX	ALPL	ALW	CF12	CF20	DCH	DMX	EFA	EMIX	FN1	FN2	FN3	GER	GH	GS	IG	MAL
ENV	2.0156	1.9770	0.05689	3587.72		236.12			17.4470		1419.77				20.8040	2.9101	0	0.08739
ENT	5.6196	0.3412	0.03987	7284.57		955.30			30.6120		0				9.2528	1.2064	205.77	0.1736
ENV*ENT	4.4629	0	0	3608.58		404.74			35.9310		5031.09				8.3218	0	127.23	0
Residual	1.2182	0.7219	0.04215	3608.58		0.9988			1.0666		5031.09				0.9877	1.1525	0.9926	0.2671
	PH	PKG	PP	PRG	PRH	PSI	RH	SDSG	SDSH	TDFA	TDMP	TIPM	TM	TSA	VFA	VP	WFA	
ENV	24.3310	3.2087		1.9117			1.8617			14.8303			0.2521			2816.66		
ENT	2.5347	0.2525		0.3677			5.5277			14.5221			1.5469			4190.53		
ENV*ENT	10.1792	24.8385		0			3.9208			41.7307			0.5821			3491.87		
Residual	1.0052	0.9617		0.6597			1.1522			1.0188			0.9214			1.0301		

CHILE Variables

	ABFA	ABMIX	ALPL	ALW	CF12	CF20	DCH	DMX	EFA	EMIX	FN1	FN2	FN3	GER	GH	GS	IG	MAL
ENV	1.8108				62.0237		4.1853				2573.91							
ENT	6.4956				783.02		2.3502				1636.71							
ENV*ENT	2.8724				283.40		0				2454.32							
Residual	2.3910				0.9995		3.3244				0.9998							
	PH	PKG	PP	PRG	PRH	PSI	RH	SDSG	SDSH	TDFA	TDMP	TIPM	TM	TSA	VFA	VP	WFA	
ENV	1.9907		0.5495	0.2104			2.0416		0.6957		0.7694					4073.44	3.3239	
ENT	1.2928		2.9030	0.5454			3.4352		6.4478		58.1870					3353.22	279.05	
ENV*ENT	2.4207		5.1133	0			20.3622		0		16.1305					5441.79	82.5192	
Residual	0.9192		0.8994	0.9959			0.9574		1.6828		0.9952					0.9999	0.9954	

Cuadro 23 - (continuación)

MEXICO Variable

	ABFA	ABMIX	ALPL	ALW	CF12	CF20	DCH	DMX	EFA	EMIX	FN1	FN2	FN3	GER	GH	GS	IG	MAL
ENV			0.09633	11004				19.8491		0.2300	0							0.1739
ENT			0.06401	28039				19.1087		2.8486	9704.80							0.1213
ENV*ENT			0	5662.07				4.6942		0	8872.41							0
Residual			0.1692	1.0240				7.3205		0.9111	0.9975							0.1519
	PH	PKG	PP	PRG	PRH	PSI	RH	SDSG	SDSH	TDFA	TDMP	TIPM	TM	TSA	VFA	VP	WFA	
ENV	20.6544			0.5797	1.1343			8.8178	1.0392			0.2659	0.2712	0.2830		2301.03		
ENT	5.8623			0.4549	0.6885			8.0666	10.7692			1.1523	1.0706	15.0012		4208.77		
ENV*ENT	0.9814			0	0			4.4702	3.4168			0	0	5.7181		3455.14		
Residual	4.2988			0.4825	0.5429			1.1454	0.3244			0.2352	0.2767	0.9846		1.4346		

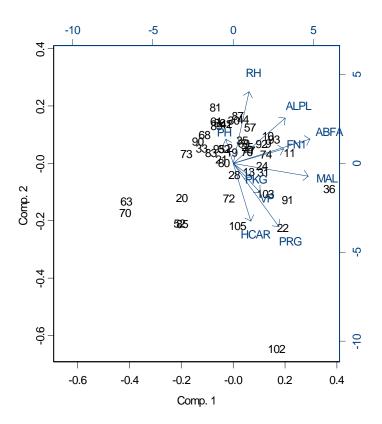
PARAGUAY

Variables

	ABFA	ABMIX	ALPL	ALW	CF12	CF20	DCH	DMX	EFA	EMIX	FN1	FN2	FN3	GER	GH	GS	IG	MAL
ENV	36.6554				1642.77	2500.02			6.7689		208.96	519.58	86.8984	62.7904				
ENT	13.9585				798.79	2054.90			11.8154		5815.55	499.34	2105.86	278.69				
ENV*ENT	21.8282				2791.18	2847.73			19.8277		10611	2097.64	1774.38	197.32				
Residual	2.6995				1.2859	1.0947			1.0258		1.0106	1.0493	1.0092	0.9984				
	PH	PKG	PP	PRG	PRH	PSI	RH	SDSG	SDSH	TDFA	TDMP	TIPM	TM	TSA	VFA	VP	WFA	
ENV									0.9173	1.2689					0.3969			
ENT									7.3666	1.9607					9.5393			
ENV*ENT									0.7683	4.4727					30.4795			
Residual									1.5872	1.0154					0.9949			

Cuadro 23 - (continuación)

URUGUAY


Variables

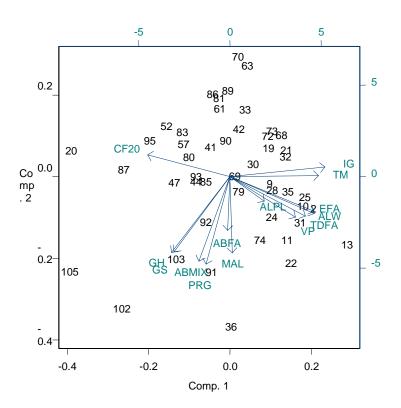
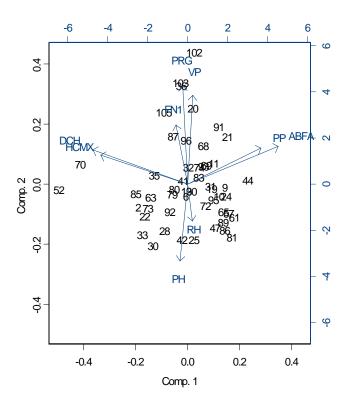
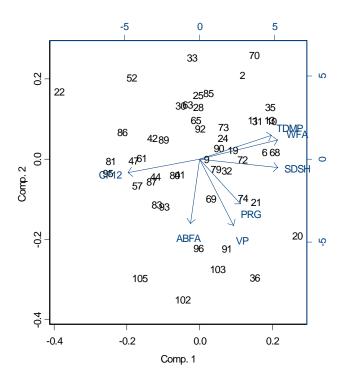

	ABFA	ABMIX	ALPL	ALW	CF12	CF20	DCH	DMX	EFA	EMIX	FN1	FN2	FN3	GER	GH	GS	IG	MAL
ENV			0.1358	656.07							76.4170				4.7419	0.7082	0.6025	1.4789
ENT			0	5306.57							0				42.5544	4.9607	211.85	0.3145
ENV*ENT			0	4322.63		-	-				7068.28				14.6262	0.1626	66.7262	0
Residual			0.3524	1.0382							0.9694				2.4772	2.0693	1.0877	0.1929
	PH	PKG	PP	PRG	PRH	PSI	RH	SDSG	SDSH	TDFA	TDMP	TIPM	TM	TSA	VFA	VP	WFA	
ENV					0.9764	2.7430			0.1350				1.9217					
ENT					0.5202	13.9430			6.9415				3.2216					
ENV*ENT					0	12.1401	-		5.5946				1.3734					
Residual					0.7306	0.9838			0.9421				1.9777					

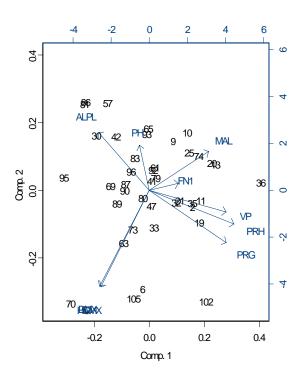
Figura 1 - Análisis de Componentes Principales por país

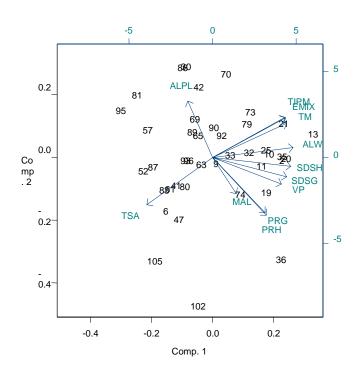
Argentina


Subconjunto variables 1

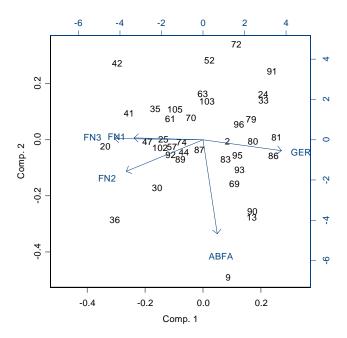


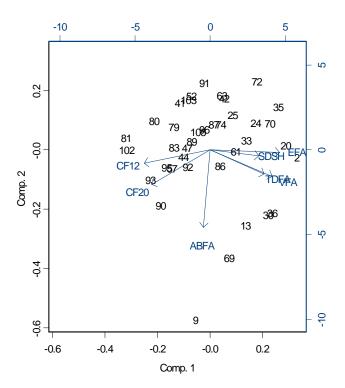
Chile


Subconjunto variables 1

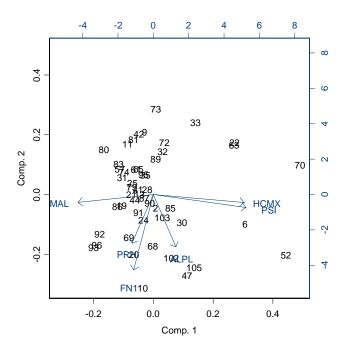


México


Subconjunto variables 1



Paraguay


Subconjunto variables 1

Uruguay

Subconjunto variables 1

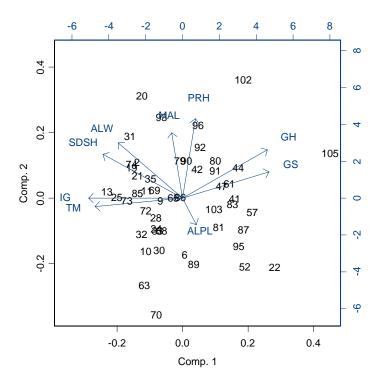
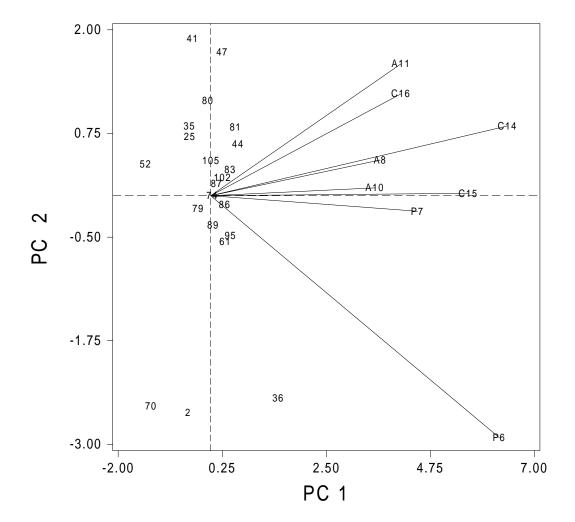



Figura 2 - SREG de ABFA

2.3. Influencia del medio ambiente sobre los parámetros de calidad de trigo harinero (riego vs. secano en México)

Características de calidad bajo ambientes contrastantes

Como se esperaba, Y01-02 produjo mejor llenado de grano que MV, lo cual se reflejó en mejor peso hectolítrico (ver **Cuadro 24**). El grano de los cultivares obtenidos en MV02 fueron en promedio más llenos que los de MV01. Probablemente por el mismo efecto ambiental sobre llenado de grano, Y01-02 produjo en promedio menores valores de dureza (grano mas duro) que los de MV. Los valores de dureza obtenidos en MV01 corresponden a grano con textura semi dura a semi blanda. Lo mayores contenidos de proteína en grano y en harina correspondieron a Y01-02. Es de hacer notar el hecho que al pasar de grano a harina, se perdió una mayor cantidad de proteína en Mv que en Y01-02. Esta diferencia se debe a que en el proceso de molienda, durante el cernido para refinar la harina, se pierde una mayor cantidad de proteína del endospermo en grano chuzo que en grano bien llenado. Los resultados de la prueba Falling Number mostraron que los niveles de actividad de alfa amilasa en los materiales de MV fueron bajos en promedio, lo cual indica que no se presentó problema de germinación en espiga en ninguno en los años de prueba.

Cuadro 24 - Características físicas y químicas de genotipos de trigo cultivados en tres ambientes contrastantes de México

Ambiente	Peso Hectol.	Dureza grano (%)	Proteína Grano (%)	Proteína Harina (%)	Falling Number (seg.)
Y01-02	78.5 A	46.5 A	13.8 A	11.6 A	
MV01	69.5 B	57.1 B	12.4 B	9.7 B	462 A
MV02	73.4 C	52.6 C	12.4 B	9.9 B	468 A

Cuadro 25 - Características de calidad de genotipos de trigo cultivados en tres ambientes contrastantes de México

Ambiente	Sedimentación. en grano ml/1g	Sedimentación en harina ml/1g
Y01-02	17.3 A	18.7 A
MV01	11.4 B	16.5 B
MV02	15.2 C	18.1 AB

El volumen de sedimentación (**Cuadro 25**), un parámetro relacionado con la calidad del gluten, fue mayor en Y01-02 que en MV y menor en MV01 que en MV02. Las diferencias en sedimentación entre ambientes son congruentes, tanto con el llenado de grano como con el contenido proteína. Las diferencias en volumen de sedimentación entre ambientes fueron mayores para harina integral (grano molido), que para harina refinada. Este resultado era esperado, ya que en la harina refinada se evalúa esencialmente la proteína del endospermo, mientras que en la integral otras proteínas y el afrecho o pericarpio interfieren negativamente con el volumen del coloide de proteína de gluten.

Cuadro 26 - Características de amasado (mixógrafo) de genotipos de trigo cultivados en tres ambientes contrastantes de México

Ambiente	Tiempo amasado min.	Estabilidad min.	Tolerancia (caída, mm)	Tipo mixográfico
Y01-02 MV01	3.3 A 3.6 B	4.3 A 5.3 B	11.2 AB 10.2 AC	4.0 A 4.4 B
MV02	2.6 C	5.1 B	11.5 B	3.4 C

Las curvas mixográficas de MV01 (**Cuadro 26**) fueron mas gruesas que las de Y01-02. Esto se debe a que las harinas refinadas de MV poseen mayor contaminación de afrecho que las de Y01-02. El afrecho absorbe parte del agua que debe absorber el gluten y otros componentes de la harina refinada. Al ocurrir esto, las masas de MV son más duras que las de Y01-02 y, por lo tanto, hay un mayor trabajo del mixógrafo para desarrollarlas, reflejándose en un mayor grosor de las curvas. Las diferencias en grosor de curvas resultaron en que las muestras de MV01 (grano con llenado más deficiente) presentaran mayor tiempo de amasado, mayor estabilidad y tolerancia al sobreamasado y produjeran un tipo mixográfico más aceptable (mayor calificación) que las muestras de Y01-02. Las muestras de Y01-02 mostraron mejor tolerancia y tipo mixográfico que las de MV02.

Cuadro 27 - Características de calidad de gluten de genotipos de trigo cultivados en tres ambientes contrastantes de México

Ambiente	ALV W	ALV P/L	Vol. de Pan
Y01-02	543 A	0.9 A	840 A
MV01	399 B	1.5 B	770 B
MV02	361 C	1.0 A	748 B

La mayor pureza de las harinas refinadas de Y01-02, aunado a un mayor contenido de proteína, dio como resultado que las muestras de esta localidad presentaran mayor fuerza de gluten, mayor extensibilidad (menor valor P/L), y mayor volumen de pan que las muestras de MV. Mientras que MV01 mostró más fuerza pero también mucho más tenacidad (mayor absorción de agua) que MV02.

En ambientes muy contrastantes la variación en calidad de trigo es muy significativa. Sobre todo cuando se ve afectado el llenado de grano. Los resultados obtenidos muestran que el llenado de grano es de primordial importancia en la determinación de calidad de un cultivo de trigo, ya que su deficiencia se refleja en la obtención de harinas con mayor contaminación de partículas de afrecho, las cuales, al tener gran capacidad de absorción de agua, interfieren negativamente en la funcionalidad de la proteína del gluten y en la determinación de la calidad de la misma.

Por tal razón, los resultados de sedimentación (sobre todo los de harina integral) y de mixografía obtenidos en MV01 son cuestionables. No se puede aplicar un mismo criterio de calidad a los valores obtenidos en muestras de Y01-02 que a los de MV. Se requieren

testigos de calidad contrastante que sirvan de referencia para interpretar los datos obtenidos.

Desde el punto de vista de mejoramiento genético de la calidad, en condiciones de secano muy errático es evidente que la prueba de sedimentación tiene un gran valor, pero sólo para eliminar genotipos con valores bajos. Esto se aplicaría en líneas segregantes. En la etapa avanzada temprana, el mixógrafo permite seleccionar con un mayor grado de certidumbre aquellas líneas experimentales que presenten buenas características de amasado (tiempo, tolerancia, estabilidad), las cuales ya son características específicas que utiliza la industria (pero con el farinógrafo) para determinar la calidad de las variedades comerciales. Más adelante, cuando los genotipos más prometedores se encuentran en etapa de pruebas de rendimiento, se aconseja utilizar el mixógrafo (o el farinógrafo) junto con el alveógrafo, para determinar de una manera más específica las características reológicas más importantes que la industria considera: propiedades de amasado, de fuerza y de extensibilidad de masa.

Genotipos con mejor calidad y mayor estabilidad a través de ambientes contrastantes.

A continuación (**Cuadros 28, 29** y **30**), se presentan listados con los genotipos que mostraron mejor calidad y estabilidad de la misma, a través de los ambientes de prueba. Estos genotipos podrían ser considerados como la base genética a emplear para desarrollar nuevas variedades con calidad deseable en los países del Cono Sur.

Es importante hacer notar que los listados incluyen los mejores genotipos entre aquellos en los cuales se pudieron efectuar los análisis de calidad. Algunos genotipos de calidad reconocida no fueron evaluados ya sea por que no se obtuvo muestra, porque el grano era demasiado chuzo como para esperar valores de parámetros de calidad validos, o por no haber obtenido suficiente harina refinada para efectuar la evaluación de calidad de panificación.

Cuadro 28 - Mejores genotipos en el MIXOGRAFO (Tipo Mixográfico)

Entrada	Cultivar	Origen	Y.01-02 Tipo Mixog		MV.02 Tipo Mixog.	Estabi-lidad Ambien-tal Tipo Mixog.
Gluten fuerte						
2	VICTORIA INTA	Argentina	6	6	5.5	***
35	BUCK PRONTO	Argentina	5	6	5	***
68		Uruguay	5	-	5	***
79	LE 2283	Uruguay	5.5	5	5	***
21	PROINTA CINCO CERROS	Argentina	5	6	5.5	**
20	KLEIN 32	Argentina	5	6	5	**
31	BUCK PANADERO	Argentina	4.5	6	5	**
Gluten medio						
10	PROINTA ALAZÁN	Argentina	6	4.5	4.5	***
74	LE 2240	Uruguay	4	4	3.5	***
19	PROINTA COLIBRÍ	Argentina	5	5	4	**
90	OPALA	Chile	5	5	4	**
96	P139/98	Chile	4	4	3	**
73	LE 2249-INIA CHURRINCHE	Uruguay	5	5	4.5	*
25	BUCK ARRIERO	Argentina	5	6	4	*
28	PROINTA CAUQUÉN	Argentina	3	4	4	*
36	KLEIN TOLEDO	Argentina	3	5	3.5	*
70	LE 2193-INIA CABURÉ	Uruguay	5	6	3.5	*
92	042/97	Chile	4.5	5	3.5	*
33	KLEIN ESTRELLA	Argentina	4.5	5.5	3	*
86	TAMOI INIA P106/99	Chile	4	5	3	*
89	MAQUI INIA 64	Chile	4	5	3	*
80	HUAÑIL INIA 1786	Chile	3.5	3.5	3	***
11	PROINTA GUAZÚ	Argentina	6	6	4.5	**
42	IAN-8	Paraguay	5	5	3.5	**
9	PROINTA REAL	Argentina	4	5	3.5	*
32	PROINTA AMANECER	Argentina	5	4.5	3.5	*

Estabilidad: Muy buena, ***; buena, **; regular, *

Cuadro 29 - Mejores genotipos en el Alveógrafo

Entrada	Cultivar	ORIGEN	Y.01-02	MV01	MV02	Y.01-02	MV01	MV02	Esta- bil.	Esta- bil.
			ALVW	ALVW	ALVW	ALV P/L	ALV P/L	ALV P/L	W	P/L
Gluten fu	ierte									
36	KLEIN TOLEDO	Argentina	700	863	690	0.9	1.3	1.2	***	***
35	BUCK PRONTO	Argentina	605	628	625	0.9	0.8	0.9	***	***
20	KLEIN 32	Argentina	765	-	615	0.8	-	0.8	**	***
2	VICTORIA INTA	Argentina	844	523	546	1	0.9	0.7	***	***
19	PROINTA COLIBRÍ	Argentina	788	575	523	0.9	0.8	0.8	***	***
31	BUCK PANADERO	Argentina	870	667	-	1	1	-	**	**
21	PROINTA CINCO CERROS	Argentina	687	530	644	0.7	1.9	0.8	***	**
10	PROINTA ALAZÁN	Argentina	674	579	549	0.7	1.7	1	**	**
28	PROINTA CAUQUÉN	Argentina	602	544	526	1	1.2	1.3	***	**
79	LE 2283	Uruguay	687	435	504	0.8	2	1.1	**	**
73	LE 2249-INIA CHURRINCHE	Uruguay	553	624	479	0.8	1.3	1.1	**	**
25	BUCK ARRIERO	Argentina	948	543	470	1.2	1.3	0.9	**	**
11	PROINTA GUAZÚ	Argentina	664	523	556	0.6	1.6	0.7	***	**
32	PROINTA AMANECER	Argentina	739	487	454	1	2.1	1.1	**	**
Gluten m	nedio									
90	OPALA	Chile	464	353	272	0.6	0.7	0.7	**	***
70	LE 2193-INIA CABURÉ	Uruguay	605	360	376	0.9	2.9	1.2	**	**
92	042/97	Chile	589	396	356	0.9	2.1	0.9	**	**
33	KLEIN ESTRELLA	Argentina	503	-	311	0.5	-	0.5	*	**
63	ESTANZUELA FEDERAL	Uruguay	523	392	219	0.6	2.7	0.7	*	**
9	PROINTA REAL	Argentina	492	412	347	0.5	1.4	0.8	**	**
Gluten d	ébil									
80	HUAÑIL INIA 1786	Chile	379	255	294	0.6	0.7	0.8	*	***
47	E-91075	Paraguay	437	311	193	0.9	0.8	0.8	*	***

Estabilidad: Muy buena, ***; buena, **; regular, *

Cuadro 30 - Mejores genotipos en Volumen de Pan

		Г	V 04 00	NAV / OC	F-4-1-30 1 1
			Y. 01-02	MV.02	Estabilidad
Entrada	Cultivar	ORIGEN	Vol.	Vol.	Vol. Pan
Gluten fuerte					
2	VICTORIA INTA	Argentina	880	935	***
10	PROINTA ALAZÁN	Argentina	915	860	**
20	KLEIN 32	Argentina	870	-	
36	KLEIN TOLEDO	Argentina	915	-	
33	KLEIN ESTRELLA	Argentina	-	890	
11	PROINTA GUAZÚ	Argentina	-	860	
Gluten medic					
74	LE 2240	Uruguay	850	835	***
73	LE 2249-INIA CHURRINCHE	Uruguay	810	820	***
90	OPALA	Chile	800	800	***
79	LE 2283	Uruguay	900	815	*
25	BUCK ARRIERO	Argentina	-	835	
35	BUCK PRONTO	Argentina	-	820	
19	PROINTA COLIBRÍ	Argentina	-	815	
21	PROINTA CINCO CERROS	Argentina	-	800	
80	HUAÑIL INIA 1786	Chile	840	800	***
Gluten débil					
83	CIKO INIA POO2/97	Chile	770	740	***
70	LE 2193-INIA CABURÉ	Uruguay	800	785	***
89	MAQUI INIA 64	Chile	800	785	***
92	042/97	Chile	860	760	*
96	P139/98	Chile	850	725	
86	TAMOI INIA P106/99	Chile	830		
41	ITAPÚA 40	Paraguay	770	750	***
61	ESTANZUELA CARDENAL	Uruguay	800	740	**
47	E-91075	Paraguay	-	790	
42	IAN-8	Paraguay	-	765	

Estabilidad: Muy buena, ***; buena, **; regular, *

2.4 Evaluación de tolerancia a la germinación de granos en espiga en caja de madera, prueba en forma inducida

En Paraguay, en las localidades de Capitán Miranda (CRIA) y Colonia Yguazú (CETAPAR) se condujo, durante los ciclos 2001 y 2202, el trabajo de prueba de germinación en condiciones extremas, usando cajas de madera y simulando lluvia, para evaluar la tolerancia a la germinación de granos en la espiga de todos las entradas que conformaron el vivero. De los resultados obtenidos, se pudieron diferenciar 18 materiales (entradas 10, 15, 20, 31, 36, 37, 45, 47, 48, 51, 52, 55, 57, 64, 66, 75, 92 y 105) con menor germinación que el resto. Los resultados completos se encuentran en informe adjunto.

2.5. Prueba de Falling Number

Debido a las condiciones muy extremas en las que se desarrollaron las pruebas, ninguno de los 112 genotipos estudiados mostró un Falling Number aceptable (por encima de 200 segundos) en las 3 medidas tomadas de los 4 ambiente mencionados en el punto anterior. De todas formas, se observaron diferencias de comportamiento entre los materiales. Se adjuntan informes con los datos completos.

3. Relación entre factores moleculares y los parámetros de calidad de trigos cultivados en ambientes diversos de países del Cono Sur y México.

En varios casos el coeficiente de determinación fue menor a 0.20, mientras que en otros ningún modelo de regresión resultó en un coeficiente de determinación significativo al 15% de probabilidad. Esto se debió, en parte, a una influencia significativa asociada con el medio ambiente de las localidades en las que se cultivaron los genotipos. El presente informe muestra modelos de regresión que explican más del 20% de la variación para un determinado parámetro (**Cuadro 31**).

Cuadro 31 - Valores de R² de la regresión múltiple explicando la influencia de los factores genéticos en la variación de las variable físicas

Dureza de grano		Índice Tamaño de F	Partícula
México	r ² Acum.	Uruquay	r ² Acum.
Pina-b Chile	0.111	Pinb-b Chile	0.240
Pinb-D1 Arg.	0.310	Pina-b Chile	0.312
Pina-D1 Arg.	0.368	Pinb-D1 Arg.	0.390
•		Pina-D1 Arg.	0.455
Clasificación dure	za de grano		
	za de grano semiblando, blando) r ² Acum. 0.124 0.284 0.347	Uruguay Pinb-b Chile Pinb-D1 Arg. Pina-D1 Arg.	r ² Acum. 0.112 0.221 0.368

En general, las variaciones en el locus *Pinb-D1* mostraron una mayor influencia en la dureza de grano (y en su clasificación) que las de *Pina-D1*. El mejor modelo de regresión obtenido explicó una mayor proporción de la de la variación en dureza en Uruguay (40 y 45%), que en México (34-37%). El medio ambiente mostró una influencia altamente significativa (los resultados no se muestran en este informe) y explica otra gran proporción de las variaciones en dureza observadas en ambos países.

Cuadro 32 - Valores de R² de la regresión múltiple explicando la influencia de los factores genéticos en la variación de las variables de gluten

Índice de Gluten			
Argentina GLU-B1 GLU-A1 GLU-B3 MX	r ² Acum. 0.093 0.173 0.237	Uruguay <i>GLU-D1</i> <i>GLU-B3</i> MX	r² Acum. 0.181 0.322
1B/1R MX	0.284		
Sedimentación en Ha	rina		
Paraguay 1B/1R MX	r² Acum. 0.143	Chile <i>GLU-B3</i> MX <i>GLU-D1</i>	r² Acum. 0.272 0.359
Uruguay GLU-A3 MX GLU-D1	r² Acum. 0.395 0.475	México GLU-B3 MX GLU-D1	r² Acum. 0.507 0.579

Las variaciones en tipo de subunidades de glutenina de alto y bajo peso molecular (APM y BPM, respectivamente) de los loci *Glu-1* (*Glu-A1, Glu-B1, Glu-D1*) y *Glu-3* (*Glu-A3, Glu-B3*), especialmente variaciones en *Glu-D1* y *Glu-B3*, sobresalieron como factores genéticos con efectos significativos, tanto en índice de gluten como en el volumen de sedimentación. Esto fue observado en todos los países que evaluaron dichos parámetros de calidad. Las variantes *Glu-A3*, determinados con microsatélites, no mostraron coeficientes de determinación significativos en ambos parámetros de calidad.

Los coeficientes de determinación de los mejores modelos explicaron alrededor de 30% de la variación en índice de gluten y entre 35 y 58% del volumen de sedimentación. Esto último indica que el volumen de sedimentación depende principalmente de la composición de las gluteninas. Las diferencias en el valor de coeficiente de determinación entre países, podrían estar relacionadas con la medida en la cual el medio ambiente influenció los resultados de este parámetro en los diferentes países. El factor más determinante en definir el volumen de sedimentación en Paraguay fue la presencia de la translocación 1b/1r. Esto podría deberse a la fuerte relación que existe entre la presencia de la translocación y la mejor tolerancia de los trigos a condiciones de alta temperatura que prevalecen en ese país.

Cuadro 33 - Valores de R² de la regresión múltiple explicando la influencia de los factores genéticos en la variación del tiempo de amasado

Tiempo de desar	rollo del Farino	grama			
Argentina	r	² Acum.	Chile		r ² Acum.
GLU-A1	C	0.099	GLU-D	1	0.133
GLU-D1	C	0.140	GLU-B	1	0.183
Tiempo de desar	rollo del Mixogr	ama			
•	J		r ² Acum.	México	r ² Acum.
Tiempo de desar Argentina GLU-B3 MX	rollo del Mixogr r ² Acum. 0.191	rama Uruguay GLU-D1	r² Acum. 0.186	México <i>GLU-B3</i> MX	r² Acum. 0.285
Argentina	r ² Acum.	Uruguay			
Argentina GLU-B3 MX	r² Acum. 0.191	Uruguay <i>GLU-D1</i>	0.186	GLU-B3 MX	0.285

Las variaciones en tipo de subunidades de glutenina de alto peso molecular del loci *Glu-1* (*Glu-A1, Glu-B1, Glu-D1*), especialmente variaciones en *Glu-D1*, sobresalieron como factores genéticos con efectos significativos en el tiempo de amasado en el Farinógrafo y en el Mixógrafo. Esto fue observado en la mayoría de los países que evaluaron dichos parámetros de calidad. Las variaciones asociadas con Glu-3 y con la translocación 1B/1R también resultaron tener coeficientes significativos en el tiempo de amasado determinado con el Mixógrafo. Los coeficientes de determinación para tiempo de amasado en el Mixógrafo fueron altos, variando de 33% a 49%.

Cuadro 34 - Valores de R² de la regresión múltiple explicando la influencia de los factores genéticos en la variación en estabilidad al sobreamasado

Estabilidad del Mixogr	ama		
México GLU-B3 MX GLU-D1 GLU-A3 ARG	r ² Acum. 0.211 0.297 0.377		
GLU-B1	0.407		
Estabilidad del Farino	grama		
Argentina GLU-B3 MX GLU-B1 GLU-A1	r² Acum. 0.171 0.243 0.277	Paraguay <i>GLU-B1</i> <i>GLU-A3</i> ARG	r ² Acum. 0.210 0.312

Las variaciones en tipo de subunidades de glutenina de alto y bajo peso molecular (APM y BPM, respectivamente) de los loci *Glu-1* (*Glu-A1, Glu-B1, Glu-D1*) y *Glu-3* (*Glu-A3, Glu-B3*), especialmente variaciones en *Glu-D1* y *Glu-B3*, sobresalieron como factores genéticos con efectos significativos en la estabilidad de amasado en el Farinógrafo y en el Mixógrafo. Como ocurrió para tiempo de amasado, tanto el numero de factores genéticos como el valor de coeficiente de determinación, fueron mayores para la estabilidad determinada en el Mixógrafo que en el Farinógrafo.

Cuadro 35 - Valores de R² de la regresión múltiple explicando la influencia de los factores genéticos en la variación de las variables aflojamiento y/o tolerancia al sobre amasado

Aflojamiento del Farinograma a 12 min				
Paraguay GLU-B1 GLU-B3 MX GLU-A3 ARG	r ² Acum. 0.136 0.242 0.299	Chile 1B/1R <i>GLU-D1</i>	r ² Acum. 0.329 0.440	
Aflojamiento del Farin	ograma a 20 min			
Paraguay GLU-B3 MX GLU-A3 ARG	r² Acum. 0.286 0.402	Argentina GLU-B3 MX GLU-D1 GLU-A3 MX GLU-B1	r ² Acum. 0.239 0.314 0.372 0.403	
Tolerancia al sobre ar	nasado (caída de la curva)			
en el Mixógrafo				
México GLU-B3 MX GLU-D1 GLU-A1 GLU-B1	r² Acum. 0.189 0.293 0.366 0.414			

Los factores genéticos que participaron en los modelos que produjeron coeficientes de determinación acumulados más altos, fueron diferentes entre Paraguay y Argentina para aflojamiento a los 12 min. En el caso de aflojamiento a los 20 min., las variaciones en *Glu-3* fueron los únicos factores determinantes en el caso de Paraguay, mientras que para Argentina fueron los mismos de Paraguay, más las variantes de *Glu-B1* y de *Glu-D1*. En ambos casos, el modelo explica 40% de las variaciones en aflojamiento de masa en el Farinógrafo. En cuanto al parámetro tolerancia (o aflojamiento) al sobreamasado en el Mixógrafo, las gluteninas APM, bajo el control de *Glu-1*, y las gluteninas de BPM de *Glu-B3* contribuyeron al modelo que explica 41% de la variación.

La diferencia en los factores genéticos que mostraron efectos determinantes sobre las variables comparativas del Mixógrafo y del Farinógrafo podría deberse a las diferencias significativas en la velocidad de amasado que existen entre ambos instrumentos.

Para los parámetros tiempo amasado en el Mixógrafo, estabilidad en ambos instrumentos, aflojamiento a los 12 min. en el Farinógrafo y tolerancia al amasado en el Mixógrafo, los marcadores moleculares utilizados para determinar variaciones en *Glu-A3* mostraron coeficientes de determinación significativos.

Cuadro 36 - Valores de R² de la regresión múltiple explicando la influencia de los factores genéticos en la variación de las variables fuerza (W) y extensibilidad (P/L) del Alveógrafo

Alveograma W	/				
Uruguay GLU-D1 GLU-B1	r² Acum. 0.125 0.169	Argentina GLU-B1 GLU-A3 MX	r² Acum. 0.143 0.227	México GLU-B3 MX GLU-B1 GLU-D1 GLU-A1	r ² Acum. 0.251 0.358 0.399 0.430
Alveograma P	/L				
Uruguay <i>GLU-B3</i> MX	r ² Acum. 0.077		México GLU- <i>B3</i> MX	r² Acum. 0.079	
GLU-B3 MA GLU-B1	0.140		GLU-A3 ARG	0.079	

El número y tipo de factores genéticos que intervinieron en el modelo que explica variaciones en fuerza de gluten, W, varió de un país a otro, siendo mayor el número de factores en México, que en Argentina y Uruguay. Variaciones en gluteninas de APM intervinieron en el modelo de los tres países. En el caso de México, la contribución de *Glu-B3* fue mayor que la de los tres loci de *Glu-1*. El modelo de coeficiente de determinación que explica el mayor porcentaje (43%) de la variación en fuerza de gluten correspondió a México, mientras que el que explico la menor proporción (16.9%) de la variación en fuerza de gluten correspondió a Argentina.

En cuanto a extensibilidad de gluten (de masa), ningún modelo resultó en un coeficiente de determinación acumulado que fuera significativo a una probabilidad del 15%. El coeficiente de determinación acumulado para Uruguay fue similar al obtenido para México, sin embargo, en el de Uruguay intervinieron una combinación de *Glu-B3* y *Glu-B1* mientras que en el de México intervinieron *Glu-B3* y *Glu-A3*. En general, las gluteninas de alto peso molecular tuvieron una mayor influencia en la fuerza de gluten que las de bajo peso molecular, mientras que lo contrario ocurrió en el caso de la extensibilidad.

Las diferencias en el valor del coeficiente de determinación entre países para fuerza (W) y extensibilidad (P/L), se debe a un fuerte efecto ambiental y el hecho de que al realizar la evaluación de fuerza de gluten en México se utilizó absorción (50-55%) variable para obtener la masa de prueba, mientras que en Argentina y Uruguay se utilizó absorción constante (50%).

Cuadro 37 - Valores de R² de la regresión múltiple explicando la influencia de los factores genéticos en la variación de volumen de pan y calidad de miga

Volumen de	Pan				
Chile	r ² Acum.	Argentina	r² Acum.	México	r ² Acum.
GLU-A1	0.052	GLU-D1	0.172	GLU-B3 MX	0.228
GLU-B1	0.105	GLU-A3 MX	0.349	GLU-D1	0.356
GLU-D1	0.149	<i>GLI-B1</i> ARG	0.394	<i>GLU-A3</i> ARG	0.393
1B/1R	0.192				
Calidad de r	miga de Pan				
Chile	r² Acum.	Argentina	r ² Acum.	México	r ² Acum
GLU-B1	0.054	GLU-D1	0.177	GLU-B3 MX	0.342
1B/1R	0.111	GLU-A3 MX	0.388	GLU-D1	0.463
				GLU-B1	0.507

El número y tipo de factores genéticos que intervinieron en el modelo que explica variaciones en volumen de pan, varió de un país a otro, siendo mayor el número de factores en Chile que en Argentina y México. Variaciones en gluteninas de APM intervinieron en el modelo de los tres países. La presencia de la translocacion (1B/1R) fue importante solo en Chile. En el caso de México, la mayor contribución al modelo correspondió a *Glu-B3*, mientras que en el de Argentina, *Glu-D1* tuvo la mayor contribución al coeficiente de determinación acumulado. El modelo que explica el mayor porcentaje (39%) de la variación en volumen de pan correspondió a México y a Argentina, mientras que el que explicó la menor proporción (19%) de la variación en volumen de pan correspondió a Chile.

Variaciones en gluteninas de APM intervinieron en el modelo de los tres países. La presencia de la translocación (1B/1R) fue importante solo en Chile. En el caso de México, la contribución de *Glu-B3* fue mayor que la de los dos loci de *Glu-1*, mientras que en Argentina *Glu-D1* y *Glu-A3* contribuyeron de manera similar al coeficiente acumulado. El modelo de coeficiente de determinación que explica el mayor porcentaje (51%) de la variación en calidad de miga correspondió a México, mientras que el que explica la menor proporción (11%) de la variación del parámetro de calidad correspondió a Chile.

Estos resultados demuestran la importancia que tienen los factores genéticos sobre los parámetros de calidad de trigo, aún en ambientes como éstos, donde la influencia ambiental es alta (los resultados de ANOVA, no presentados, muestran que la influencia ambiental es altamente significativa). Sobresale, principalmente, la alta frecuencia con la que se encuentran los loci *Glu-D1* y *Glu-B3*, los cuales controlan gluteninas de alto y bajo peso molecular, respectivamente. En general, las variaciones en *Glu-D1* se asociaron mayormente con tiempo de amasado (desarrollo de masa) y fuerza de gluten mientras que las de *Glu-B3* con estabilidad al amasado, tolerancia (debilitamiento) al amasado y extensibilidad. La combinación *Glu-D1/Glu-B3* parece tener un efecto similar en volumen de pan y calidad de miga. Entre los factores genéticos evaluados, las gluteninas que mostraron menor contribución a la calidad de los parámetros de calidad de gluten fueron las controladas por *Glu-A1* y *Glu-A3*. La translocación 1B/1R mostró ser importante, principalmente en propiedades de desarrollo y tolerancia de masa y en volumen de pan y calidad de miga.

Por otro lado, los resultados obtenidos permiten recomendar, sin duda, que para lograr un proceso eficiente de mejoramiento de la calidad de trigo, es necesario determinar la

composición genotípica de los progenitores y dirigir los cruzamientos de tal manera que se evite la posibilidad de obtener líneas que posean combinaciones indeseables de gliadinas y gluteninas.

Finalmente, el desarrollo de un índice de calidad será tarea de cada país, tomando en cuenta sus necesidades reales de calidad; Argentina busca desarrollar trigos correctores de gran fuerza para el mercado de panificación, mientras que, en el otro extremo, Paraguay y probablemente Chile necesiten trigos con menor fuerza (gluten intermedio que satisfagan las necesidades de una industria de panificación que es prevalentemente semimecanizada y artesanal. Los parámetros más importantes a tomar en cuenta en el desarrollo de un índice de calidad son: Peso hectolitrico, dureza de grano, tiempo de desarrollo de masa, estabilidad y tolerancia de la misma al sobreamasado. En algunos países (Argentina y quizás Uruguay) es posible incorporar los parámetros de fuerza (W) y extensibilidad (P/L) determinados con el Alveógrafo. Los rangos de valores de los parámetros seguramente variaran de un país a otro, ya que estarán en función de las demandas de su industria local (mercado de exportación en el caso de Argentina).

DISCUSIÓN Y CONCLUSIONES

La voluminosa información recabada incluye los aspectos relevantes en la calidad industrial del trigo pan en el Cono Sur. Se determinaron factores moleculares asociados con las principales características de calidad, mediante el uso de microsatélites y electroforesis de proteínas de reserva, según el caso. Esta información se agregó a juegos de datos completos de parámetros fisicoquímicos y reológicos de ambientes altamente contrastantes y representativos del Cono Sur, y con información de procesamiento de genotipos claves en algunos de estos ambientes.

Cabe destacar la altísima variabilidad de genotipos en todos los parámetros analizados: hay grano desde blando a duro, baja proteína a alta proteína y alta calidad de gluten a muy baja. Por ejemplo, los promedios de proteína van desde 12.2% (Entrada 86) a 15.7% (Entrada 102), los de W de alveograma van desde 63 (Entrada 22) a 751 (Entrada 36) y los porcentajes de absorción de agua con farinógrafo van desde 54.4% (Entrada 70) hasta 68% (Entrada 36).

La amplitud de los rangos de los valores promedios de los distintos ambientes demuestra que los mismos fueron contrastantes. Los promedios de los valores de proteínas de los 51 entradas en los ambientes evaluados varían de 12.2% (ambiente 1) a 14.6% (ambientes 2, 3 y 13), mientras que el W de alveograma oscila entre 232 (ambiente 1) a 547 (ambiente 7) y los porcentajes de absorción de agua con farinógrafo entre 60.1% (ambiente 1) y 73.2 (ambiente 11).

Con la información recogida se puede hacer un ejercicio de selección para verificar la calidad de los genotipos utilizados y la aptitud de distintos parámetros para seleccionarlos.

Para seleccionar trigos con buena actitud panadera, es necesario compatibilizar distintos criterios.

Reuniendo los distintos requisitos por sus interrelaciones, podemos establecer que deben cumplir con cuatro requisitos totalmente independientes. Primeramente, el grano debe tener textura dura. A su vez, el grano no puede tener alteraciones debidas a procesos bioquímicos iniciales de germinación, esto es, debe ser resistente al brotado en los ambientes a ser cultivado. Simultáneamente, las proteínas formadoras de gluten deben ser capaces de formar una red que tenga la capacidad de generar un buen pan, o sea, las proteínas deben tener calidad tal que el gluten debe ser "fuerte". Por último, además de buena calidad, las proteínas deben estar en cantidad suficiente.

La gran mayoría de los materiales demostraron tener una textura dura. Esto demuestra un continuo trabajo previo de selección de materiales por textura de grano. De todas formas, la presencia de algunos materiales blandos con gluten de calidad panadera establece una señal de alerta para evitar que este tipo de genotipos aparezca en el mercado. Se está trabajando en cooperación para solucionar algunos problemas de incompatibilidades puntuales de resultados.

Ninguno de los genotipos analizados mostró tener una tendencia a la germinación cuando fueron cultivados en condiciones estándares, ya que los Falling Number fueron aceptables. De todas formas, si se desea seleccionar materiales que resistan germinación en condiciones extremas, es necesario aplicar técnicas específicas. La metodología utilizada

en los experimentos diseñados específicamente para este fin demostró ser muy exigente para los cultivares usados en el proyecto.

Para la mayoría de las industrias de panificación del Cono Sur, el alveógrafo es el equipo preferido para determinar la calidad de una partida de trigo o harina. La harina debe tener un alto valor de W (fuerza panadera) y una relación tenacidad/extensibilidad adecuada (un valor en el entorno a 1). Teniendo en cuenta este criterio con la mayor de las exigencias, se pueden elegir los genotipos de muy buena fuerza panadera, tomando el promedio de todos los ambientes y seleccionando aquellos que tengan un W mayor a 330 j/10000 y un P/L entre 0.80 y 1.20. De los **Cuadros 18** y **19** se desprende que con este criterio se pueden seleccionar 21 genotipos. Cabe destacar que estos genotipos, a los que de aquí en más se denominarán de "gluten fuerte", corresponden a los cuatro países: 12 de Argentina (Entradas 2, 9, 11, 13, 19, 21, 25, 28, 31, 32, 35 y 36), 3 de Chile (Entradas 91, 92 y 93), 1 de Paraguay (Entrada 44) y 5 de Uruguay (Entradas 68, 72, 73, 74 y 79).

Sólo 4 genotipos tuvieron un W mayor a 350 y no tuvieron un promedio de P/L entre 0.8 y 1.2. Es bien conocida la relación entre tenacidad/extensibilidad y contenido proteico: cuanto mayor el contenido de proteínas, menor es esta relación. Esto se evidencia en estos genotipos: los tres que tienen W mayor a 350 y P/L mayor a 1.2 (Entradas 10, 30 y 42) tienen contenido de proteínas, en el promedio de ambientes, por debajo del promedio total de proteínas, mientras que el único de W mayor a 350 y extensibilidad menor a 0.8 (Entrada 20) es uno de los de mayor contenido proteíco en promedio (15.0%).

Los otros dos componentes de calidad reológica importantes, luego de los valores alveográficos, son absorción de agua y estabilidad al mezclado del farinograma. Todos los genotipos seleccionados por sus valores alveográficos tienen una buena absorción de agua (mayor o igual a 60%) con la única excepción de la Entrada 2 (58.8%).

Con criterio de alta exigencia, a estos materiales se les puede exigir una estabilidad al mezclado igual o mayor a 12 minutos promedio, en todos los ambientes. De los 20 genotipos preseleccionados por valores alveográficos y absorción de agua, sólo 12 tienen una estabilidad tan buena: 10 de Argentina (Entradas 11, 13, 19, 21, 25, 28, 31, 32, 35 y 36) y 2 de Uruguay (Entradas 68 y 74), a los que de aquí en más se referirá como de "gluten muy fuerte".

Un criterio independiente de selección es el valor de volumen de pan. Promediando los valores de volumen de pan de los ambientes estudiados y estableciendo un límite inferior de 850ml, 13 genotipos serían seleccionados: Entradas 2, 13, 21, 31, 32, 36, 72, 73, 79, 91, 96, 102 y 103. De éstos, 10 componen el grupo de genotipos de gluten fuerte. Los tres genotipos de alto volumen de pan que no integran dicho grupo son chilenos. Dos de ellos están justo en el límite establecido (Entrada 96, con un W de 328 y Entrada 103, con 326). Por consiguiente, ambos criterios de selección están relacionados estrechamente.

Además de poseer buena calidad de proteínas, los genotipos deben tener una fuerza de gluten estable en ambientes contrastantes. Los resultados obtenidos con los datos de México muestran que de los genotipos de gluten fuerte, sólo la entrada 2 es muy estable en su tipo mixográfico, alveográfico y de panificación (**Cuadros 28**, **29** y **30**). De todas formas, las entradas 9, 73 y 74, mostraron estabilidad buena a muy buena en dichos parámetros, lo que los convierte en materiales de elección. La entrada 73 también tuvo un comportamiento estable en Argentina (Cuniberti y Masiero 2003).

En programas de mejoramiento donde se desee seleccionar por calidad, es indispensable contar con métodos rápidos que utilicen poca cantidad de muestra. El método de sedimentación con SDS utilizado en este proyecto ha sido propuesto con tal fin (Peña et al 1990). Si tomamos como criterio de selección el valor medio de todos los genotipos analizados por sedimentación con SDS en los 10 ambientes donde se realizó este análisis, observamos que 10 genotipos (Entradas 2, 13, 20, 21, 25, 31, 35, 36, 73, 74) serían seleccionados en todos los ambientes. Siete de estos diez componen el grupo de "muy fuertes". De los otros tres, dos forman parte del grupo de genotipos de gluten fuerte, mientras que el restante (Entrada 20) tuvo un altísimo W promedio (531) pero fue descartado por ser extensible. Estos datos validan el uso de sedimentación con SDS como una herramienta útil para la selección de materiales de gluten fuerte.

La validez del uso de sedimentación con SDS para predecir genotipos con alto W se confirma con el análisis de Componentes Principales por país. Tanto en México como en Uruguay, los dos países que utilizaron ambos métodos, los vectores de ALW (W de alveograma) y SDSH (volumen de sedimentación de harina) están muy próximos en los biplots correspondientes.

Los análisis moleculares relacionados apoyaron estas conclusiones, aunque en distinta medida. Las gluteninas de alto peso molecular son los componentes más importantes para definir la fuerza de gluten. En particular, un gluten fuerte no puede tener el alelo nulo en Glu-A1 ni tener el alelo 2+12 en Glu-D1. Esto se verificó en los 12 genotipos de gluten muy fuerte. Entre los 21 genotipos de gluten fuerte, sólo dos no cumplieron con este requisito: los entradas 44 y 93 poseen el alelo 2+12 en Glu-D1. Cabe destacar que son las dos variedades de menor W de este grupo, y si se trabajara con una exigencia un poco mayor de W (360), ambos genotipos se excluirían. Es de resaltar que Glu-D1 se correlacionó significativamente con SDSH de Chile, México y Uruguay, ALW de México y Uruguay, TDFA de los dos países donde fue determinado (Argentina y Chile), además de otros parámetros de mezclado (ver sección 3 de Metología).

Las relaciones entre los resultados moleculares y la calidad panadera no es tan clara para el resto de los estudios realizados. De los 12 genotipos de gluten muy fuerte, 2 poseen la traslocación con centeno y 9 el alelo de Chinese Spring en Gli-D1. Por otro lado, la entrada 103 es el único genotipo que cumple con los mayores requisitos de los componentes moleculares estudiados (2* en Glu-A1, 5+10 en Glu-D1, sin traslocación de centeno y alelo de Cheyenne en Gli-D1) y no está en el grupo de gluten fuerte. Cabe reiterar que este genotipo dio excelentes volúmenes de pan, y de todas formas tuvo buen W promedio (326).

Tratando de relacionar la información obtenida en parámetros moleculares con calidad de gluten, se encuentra que los resultados son difíciles de analizar, probablemente, debido a las diversas interacciones existentes. De todas formas, los datos obtenidos realizan aportes significativos para poder seleccionar los mejores materiales. Si bien los coeficientes de determinación obtenidos son relativamente bajos, son suficientes para explicar un componente de calidad, por lo que se demuestra la utilidad de estas herramientas. Los coeficientes de determinación no son mayores por la complejidad genética de la fuerza de gluten, donde intervienen más de cien proteínas distintas y las diferentes relaciones entre ellas (Gianibelli et al 2001).

De todas formas, los parámetros que pueden ser utilizados para definir "fuerza de gluten" son, principalmente, de carácter genético. Esto se evidencia por los resultados de análisis

de componentes de varianza, tanto para W de alveograma como para volumen de sedimentación, donde el genotipo es el principal componente en todos los países donde se realizó cada uno de estos análisis. La validez de los resultados se resalta al ser obtenidos trabajando con ambientes muy contrastantes.

Según los resultados de los análisis de componentes de varianza, el porcentaje de proteínas mostró tener un alto componente ambiental en todos los países estudiados. Si bien es un parámetro esencial, y debe ser chequeado en todo momento, no es un buen criterio para seleccionar genotipos, ya que el ambiente aporta mucha mayor variabilidad.

En los protocolos pre-establecidos en el proyecto no se incluyó el uso de control químico en los viveros que generaron las muestras para los diferentes análisis, lo cual acarreó problemas sanitarios, principalmente fusariosis de la espiga, como fue comentado en su momento. Estos problemas sanitarios influyeron significativamente en los resultados, alterando la importancia de determinados genotipos en algunos ambientes. El ruido introducido por las interacciones causadas por las enfermedades hizo aún más compleja la tarea. Si bien es posible establecer criterios de selección como los mencionados más arriba, es imposible hacer estudios más definidos. Por ejemplo, con dichas interacciones los datos de calidad generados no fueron adecuados para poder establecer un índice incluyendo los resultados de todos los ambientes, como estaba planteado en los objetivos. Se sugiere para el futuro establecer un protocolo que prevea estos inconvenientes, sugiriendo algún sistema de control integrado de enfermedades. Para minimizar interacciones, se sugiere, a su vez, establecer criterios de disponibilidad de nutrientes, en particular de nitrógeno. Esto minimizaría la variabililidad de contenido proteico, haciéndola dependiente exclusivamente de componentes genéticos y variables puramente climáticas. Estas limitantes atentaron también contra la meta de iniciar un programa de mejoramiento regional para combinar en nuevas variedades las características de calidad deseables. De todas maneras, los resultados obtenidos se consideran básicos como etapas iniciales para un programa de mejoramiento, dado que se han detectado fuentes de variabilidad y genotipos de excelente calidad. Se está discutiendo entre los participantes del provecto ajustes que permitan avanzar al respecto.

Si bien se ha hecho evidente la diferencias entre ambientes, no se puede concluir que esta diferencia sea debida a localidades. Se ha observado que localidades que usualmente producen granos de alta calidad, en este trabajo han producido muestras de calidad inferior a lo esperado. Se propone que para poder definir las características de calidad, se establezca un grupo menor de genotipos y se siembren en las mismas localidades durante por lo menos tres años. Estos ensayos permitirían generar información que apunte a la generación de un índice, o herramientas similares, para poder seleccionar los genotipos que cumplan los requisitos industriales.

En síntesis, los resultados obtenidos, con sus fortalezas y sus limitantes, permiten establecer una base hacia el futuro. Es evidente que Argentina posee mucho germoplasma de alta calidad, pero también se detectaron genotipos promisorios en todos los otros países. Los parámetros moleculares mostraron su utilidad y complementación con el resto de la información obtenida. Los programas de mejoramiento genético de los respectivos países ya incluyeron esta información en sus bases de datos y algunos genotipos estudiados están siendo reconsiderados como padres para futuras cruzas, con el objetivo de mejorar la calidad industrial.

PUBLICACIONES, REPORTES Y DOCUMENTOS

1. Lista de bibliografía citada

- AACC. 1993. Approved Methods of the American Association of Cereal Chemists. Métodos 10-10, 10-50, 38-12, 46-11, 54-21, 54-30, 54-40, 55-10, 55-30 y 56-81B. The Association: St.Paul, MN, USA.
- Anderson, J. A., G. A. Churchill, J.E. Autrique, S. D. Tanksley, and M. E. Sorrells, 1993. Optimizing parental selection for genetic linkage maps. *Genome* **36**: 181-186.
- Bettge, A. y Morris C. 2000. Relationships among grain hardness, pentosan fractions and end-use quality of wheat. *Cereal Chemistry* **77**:241-247.
- Branlard, G., Autran J. C., Rousset M., Dardevet M., and Koenig J. 1990. Catalogue des sous unités de hault poids moléculaire des glutenines des blés. INRA. 56 p.
- Braun H.J., Payne T.S., Morgunov A.I., van Ginkel M. & Rajaram S. 1998. The challenge: one billion tons of wheat by 2020. In: *Proc. 9th Int. Wheat Genet. Symp.* A.E. Slinkard (Ed.), Saskatoon, Canada.
- Bullrich, L. Tranquilli, G., Pflüger, L.A., Suárez, E.Y., Barneix, A.J. 1998 Bread-making quality and yield performance of 1BL/1RS wheat isogenic lines. *Plant Breeding* **117**: 119-122.
- Cuniberti, M.B. y Masiero, B. 2003. Estabilidad en la calidad en ambientes contrastantes de Argentina. Libro de resúmenes del "Taller: Calidad de Trigo en el Cono Sur". La Estanzuela, Colonia, Uruguay.
- Devos, K.M., G. J. Bryan, A. J. Collins, P. Stephenson, M. D. Gale. 1995. Application of two microsatellite sequences in wheat storage proteins as molecular markers. *Theor. Appl Genet* **90** (2) 247-253
- Dubcovsky, J., and Dvorak, J. 1995. Ribosomal RNA loci: Nomads in the Triticeae genomes. *Genetics* **140**: 1367-1377
- Dubcovsky, J., Luo, M.-C., and Dvorak, J. 1995. Differentiation between homoeologous chromosomes 1A of wheat and 1A^m of *Triticum monococcum* and its recognition by the wheat *Ph1* locus. *Proc. Natl. Acad. Sci.* USA. **92**: 6645-6649.
- Elder JK, Southern EM, 1987. Computer –aided analysis of one dimensional restricción fragment gels. Restriction Fragment Gels. Chapter 7. pag 165-172.
- Gale, M.D., Atkinson, M.D., Chinoy, C.N., Harcourt, R.L., Jia, J., Li, Q.Y., and Devos, K.M. 1995. Genetic maps of hexaploid wheat. Proceedings 8th International Wheat Genetic Symposium, Beijin, China Agricultural Scientech Press
- Gautier MF, Aleman ME, Guirao A, Marion D, Joudrier P 1994. *Triticum aestivum* puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. *Plant Molecular Biology* **25**: 43-57.
- Gianibelli, M.C., Larroque, O.R., MacRitchie, F. y Wrigley, C.W. 2001. Review: Biochemical, genetic and molecular characterization of wheat glutenin and its component subunits. Cereal Chem. **78**:635-646.
- Giroux, M. y Morris, C. 1998. Wheat grain hardness results from highly conserved mutation in the friabilin components puroindoline a and b. Proc. Natl. Acad. Sci. **95**: 6262-6266.

- Giroux, M.; Talbert, L.; Lanning, S.; Hemphill, A. y Martin, J. 2000. Association of puroindoline sequence type and grain hardness in hard red spring wheat. *Crop Science* **40**: 370-374.
- Graybosch R.A. 2001 Uneasy unions: quality effects of rye chromatin transfers to wheat. *J. Cereal Sci.* **33**: 3-16.
- Gupta, R.B., Bekes, F., and Wrigley, C.W. 1991. Prediction of physical dough properties from glutenin subunit composition in bread wheats: correlation studies. *Cereal Chem.* **68**: 328-333.
- Gupta, R.B., and MacRitchie, F. 1991. A rapid one-step one-dimensional SDS-PAGE procedure for analysis of subunit compositio of glutenin in wheat. *J. Cereal Sci* **14**: 105-109.
- Gupta, R.B., and MacRitchie, F. 1994. Allelic variation at glutenin subunit and gliadin loci, *Glu-1, Glu-3* and *Gli-1* of common wheats. II. Biochemical basis of the allelic effects on dough properties. *J. Cereal Sci* **19**: 19-29.
- Gupta, R.B., Paul, J.G., Cornish, G.B., Palmer, G.A., Bekes, F., and Rathjen, A.J. 1994. Allelic variation at glutenin subunit and gliadin loci, *Glu-1*, *Glu-3* and *Gli-1* of common wheats. I. Its additive and interaction effects on dough properties. *J. Cereal Sci* **19**: 9-17
- Hewstone, N., y Hinrichsen P. 1994. Composición de subunidades de gluteninas de alto peso molecular de trigos de pan (*Triticum aestivum* L.). Agricultura técnica. **54**(3): 211-218.
- Hinrichsen, P., Opitz X., Ramírez I., y Muñoz C. 1997. Identificación de cultivares chilenos de trigos de pan (*Triticum aestivum* L.) y trigos candeales (*Triticum durum* Def.) basada en perfiles electroforéticos de gliadinas. Agricultura Técnica (Chile). **57**(2):102-112.
- Jackson, E.A., Holt, L.M., and Payne, P.I. 1983. Characterization of high molecular weight gliadin and low-molecular-weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and the chromosomal localisation of their controlling genes. *Theor. Appl. Genet.* **66**: 29-37
- Khan K., Hamada A.S. & Patek J. 1985 Polyacrylamide gel electrophoresis for wheat variety identification: Effect of variables on gel properties. *Cereal Chem.* **62**: 310-313.
- Khelifi, D., and Branlard, G. 1992. The effect of HMW and LMW subunits of gluten and of gliadins on the technological quality of progeny from four crosses between poor breadmaking quality and strong wheat cultivars. *J. Cereal Sci* **16**: 195-209
- Law CN, Young CF, Brown JWS, Snape JW, Worland AJ 1978. The study of grain protein control in wheat using whole chromosomes substitution lines. En: *Seed protein improvement by nuclear techniques*. International Atomic Energy Agency, Vienna, Austria, pp 483-502
- Lillemo M., C.F. Morris 2000. A leucine to proline mutation in puroindoline b is frequently present in hard wheats from Northern Europe. *Theor Appl Genet* **100**:1100–1107
- Manifesto M.M., Feingold S., Hopp H. E., Schlatter A. R., and Dubcovsky J. 1998. Molecular marker s associated with differences in bread-making quality in a cross between bread wheat cultivars with the same high M_r glutenins *Journal of Cereal Science*, **27**: 217-227.

- Martin, P.; Frohberg, R.; Morris, C.; Talbert, L. y Giroux, M. 2001. Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. *Crop Sci.* **41**: 228-234.
- Masci S., Porceddu E. & Lafiandra D. 1991. Two-dimensional electrophoresis of 1D encoded B and D glutenin subunits in common wheat with similar omega gliadins. *Biochem. Genet.* **29**: 403-413.
- Metakovsky E.V. 1991. Gliadin allele identification in common wheat. II. Catalogue of gliadin alleles in common wheat. *J. Genet. & Breed.* **45**: 325-344.
- Metakovsky, E.V., Wrigley, C.W., Bekes, F., and Gupta, R.B. 1990. Gluten polypeptides as useful genetic markers of dough quality in Australian wheats. *Aust. J. Agric. Res.* **41**: 289-306.
- Morris C. F. 2002. Puroindolines: the molecular genetic basis of wheat grain hardness *Plant Molecular Biology* **48**: 633–647.
- Payne, P.I. 1987. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. *Ann. Rev. Plant Physiol.* **38**: 141-153.
- Peña,R.J.; Amaya,A.; Rajaram,S.; Mujeeb-Kazi,A. 1990. Variation in Quality Characteristics Associated with Some Spring 1B/1R Translocation Wheats. Journal of Cereal Science **12**:105-112.
- Pflüger L, Suárez E., Lafiandra D. 1998 Relationships between wheat high molecular weight glutenin subunits compositions, 1RS translocations and sodium dodecyl sulfate sedimentation volume. *J. Genet. & Breed.* **52**: 271-279.
- Pogna, N.E., Autran, J.-C., Mellini, G., Lafiandra, D., and Feillet, P. 1990. Chromosome 1B-encoded gliadins and glutenin subunits in durum wheat: genetics and relationship to gluten strength. *J. Cereal Sci.* **11**: 15-34
- Pogna, N.E., Redaelli, R., Dachkevitch, T., Curioni, A., and Dal Belin Peruffo, A. 1994. Genetics of wheat quality and its improvement by conventional and biotechnological breeding. In: *Wheat. Production, properties and quality.* Glasgow, UK, Blakie Academic and Professional, Chapman & Hall. 128-142.
- Rahman S, Jolly JC, Skerritt JH, Wallosheck A 1994. Cloning of a wheat 15-kDa grain softness protein (GSP). GSP is a mixture of puroindoline–like polypeptides. *Eur J Biochem* **223**: 917-925
- Roy JK, Prasad M, Varshney RK, Balyan HS, Blake TK, Dhaliwal HS, Singh H, Edwards KJ, Gupta PK. 1999. Identification of a microsatellite on chromosomes 6B and STS on 7D of bread wheat showing an association with preharvest sprouting tolerance. *Theor. Appl Genet* **99**:336-340.
- Ruiz, M., and Carrillo, R.M. 1993. Linkage relationships between prolamin genes on chromosomes 1A and 1B of durum wheat. *Theor. Appl. Genet.* **87**: 353-360
- Schofield, J.D. 1994. Wheat proteins: structure and functionality in milling and breadmaking. In: *Wheat. Production, properties and quality*. Glasgow, UK, Blakie Academic and Professional, Chapman & Hall. 73-106
- Shangai -Maroof, M., Soliman, K., Jorgensen, R., Allard, R. 1984. Ribosomal DNA sapacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. *Proc. Natl. Acad. Sci.* USA **81**: 8014-8018.

- Singh, N.K., and Shepherd, K.W. 1988. Linkage mapping of the genes controlling endosperm proteins in wheat. 1. Genes on the short arms of group 1 chromosome. *Theor. Appl. Genet.* **75**: 628-641
- Singh, N.K., Shepherd, K.W., and Cornish, G.B. 1991. A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. *J. Cereal Sci.* **14**: 203-208
- Tippless KH, Kilborn RH, Preston KR 1994. Bread–wheat quality defined. In: Bushuk and Rasper (eds) Wheat, production, properties and quality. Blackie Academic and Professional, Chapman & Hall, Glasgow, U.K, pp 25-35.
- Tranquilli G, D Lijavetzky, G Muzzi, J Dubcovsky 1999. Genetic and physical characterization of grain texture-related loci in diploid wheat. *Molecular and General Genetics* **262**: 846-850.
- Villareal R.L., Banuelos O., Mujeeg-Kazi A. & Rajaram S. 1998 Agronomic performance of chromosome 1B and 1BL.1RS near-isogenic lines in the spring wheat Seri M82. *Euphytica* **103**: 195-202.
- Weegels, P.L., Hamer, R.J., and Schofield, J.D. 1996. Functional properties of wheat glutenin. *J. Cereal Sci* **23**: 1-18.

2. Lista de Informes Adjuntos (ver Anexos)

2.1. "Caracterización y desarrollo de germoplasma para mejorar la calidad industrial del trigo en el Cono Sur." Parte I: Determinar factores moleculares asociados con las características de calidad de gluten y que sean útiles en el mejoramiento de la calidad industrial del trigo (Objetivo Específico 1.2.1). (incluye Anexo).

Roberto Javier Peña (CIMMYT, Méjico); María Marcela Manifesto, Laura A. Pflüger, Gabriela Tranquilli, Marcos Bonafede, Silvina Lewis (INTA Castelar, Argentina); Claudio Jobet, Javier Zúñiga y Mireya Zerené (INIA, Chile).

- 2.2.1 Análisis estadístico de los experimentos de calidad.
 - J. Crossa, J. Burgueño, M. Vargas, J. Peña, y M. Kholi. CIMMYT
- 2.3. Influencia del medio ambiente sobre los parámetros de calidad de trigo harinero (riego vs. secano en méxico)

Roberto J. Peña, José Crossa y Mohan Kohli. CIMMYT.

2.4. "Proyecto de caracterización y desarrollo de germoplasma para el mejoramiento de la calidad industrial del trigo en el cono sur.(FONTAGRO). Ciclos 2001 y 2002. Evaluación de tolerancia a la germinación de granos en espiga en caja de madera, prueba en forma inducida.

Ing. Agr .Egon Andrés Bogado, Tecn. Alim. Graciela Cabrera, Ing. Agr. Javier Casaccia, BTA. Epifanio Altamirano, PR. Emilio Morel, PR. Valerio Valdez, PR. Vivaldo Morel.

2.5. "Proyecto de caracterización y desarrollo de germoplasma para el mejoramiento de la calidad industrial del trigo en el cono sur.(FONTAGRO). Ciclo 2001. Prueba de Falling Number (Método Perten H.).

Ing. Agr .Egon Andrés Bogado, Tecn. Alim. Graciela Cabrera, Ing. Agr. Javier Casaccia, BTA. Epifanio Altamirano, PR. Emilio Morel, PR. Valerio Valdez.

2.6. "Proyecto de caracterización y desarrollo de germoplasma para el mejoramiento de la calidad industrial del trigo en el cono sur.(FONTAGRO). Ciclo 2002. Prueba de Falling Number (Método Perten H.).

Ing. Agr .Egon Andrés Bogado, Tecn. Alim. Graciela Cabrera, Ing. Agr. Javier Casaccia, BTA. Epifanio Altamirano, PR. Emilio Morel, PR. Valerio Valdez.

2.7. Relación entre factores moleculares y los parámetros de calidad de trigos cultivados en ambientes diversos de países del Cono Sur y México.

Roberto J. Peña, José Crossa v Mohan Kohli. CIMMYT

2.8. Calidad y competitividad en la cadena triguera: el segmento procesador de las harinas de trigo.

Gonzalo Gutiérrez, Gonzalo Souto, Fernando Villamil

- 2.9. La industria molinera, panadera y galletitera argentina *Ing. Qca. Martha B. Cuniberti.*
- 2.10. Requerimientos industriales en Chile *Ing. Agr. Dense Granger*

- 2.11. Requerimientos industriales en Paraguay *G.Cabrera*
- 2.12. Libro de resúmenes del Taller "Calidad de Trigo en el Cono Sur", realizado en La Estanzuela (Colonia, Uruguay) los días 5 y 6 de junio de 2003, con la participación de más de 70 científicos y técnicos de Argentina, Brasil, Chile, Paraguay y Uruguay, además de científicos invitados de México y Francia.

ANEXOS

1- EQUIPO TECNICO PARTICIPANTE

Ing. Agr. M. Sc. Rubén P. Verges (Líder del Proyecto)

Mejoramiento Cultivos de Invierno

INIA La Estanzuela Ruta 50, Km. 11 Colonia, URUGUAY

CP: 70000 CC: 39173

Tel.: 00598 574 8000 Fax: 00598 574 8012

E-mail: verges@inia.org.uy

ARGENTINA

Ing. Qca. Martha Beatriz Cuniberti (Enlace Nacional)

INTA Marcos Juárez Ruta Prov. N°12

Marcos Juárez, Córdoba

ARGENTINA CP: 2580 CC: 21

Tel.: 0054 3472 425001 y líneas rotativas

Fax: 0054 3472 425001

E-mail: mcuniberti@correo.inta.gov.ar

Ing. Agr. M. Sc. Jorge Enrique Nisi (Enlace Nacional)

INTA

Ruta Prov. N°12

Marcos Juárez, Córdoba

CP: 2580 CC: 21

Tel.: 0054 3472425001 y líneas rotativas

Fax: 0054 3472425001

E-mail: jnisi@correo.inta.gov.ar

Ing. Agr. Enrique Suárez (Enlace Nacional)

INTA Castelar

Inst. de Recursos Biológicos Las Cabañas y los Reseros s/n

Cautelar ARGENTINA CP: 1712

Tel.: 0054 11 4621 1819/0840 Fax: 0054 11 4621 6903 E-mail: ysidro@cirn.inta.gov.ar Ing. Agr. Gabriela Edith Tranquilli INTA Castelar Inst. de Recursos Biológicos Las Cabañas y los Reseros s/n Cautelar ARGENTINA

Tel.: 0054 11 4621 1819/0840 Fax: 0054 11 4621 6903

CP: 1712

CP: 1712

E-mail: gtranqui@cirn.inta.gov.ar

Dra. Laura Alicia Pflüger INTA Castelar Inst. de Recursos Biológicos Las Cabañas y los Reseros s/n Cautelar ARGENTINA

Tel.: 0054 11 4621 1819/0840 Fax: 0054 11 4621 6903

E-mail: lpfluger@cirn.inta.gov.ar

Dra. María Marcela Manifesto INTA Castelar Inst. de Recursos Biológicos Las Cabañas y los Reseros s/n Cautelar ARGENTINA

Tel.: 0054 11 4621 1819/0840 Fax: 0054 11 4621 6903

E-mail:

CP: 1712

Lic., MSc, Silvina Lewis INTA Castelar Inst. de Recursos Biológicos Las Cabañas y los Reseros s/n Cautelar ARGENTINA

CP: 1712

Tel.: 0054 11 4621 1819/0840 Fax: 0054 11 4621 6903 E-mail: slewis@cirn.inta.gov.ar Ing. Agr., MSc., Ana Rosa Schlatter

INTA Castelar

Inst. de Recursos Biológicos Las Cabañas y los Reseros s/n

Cautelar ARGENTINA CP: 1712

Tel.: 0054 11 4621 1819/0840 Fax: 0054 11 4621 6903

Marcos Bonafede INTA Castelar Inst. de Recursos Biológicos Las Cabañas y los Reseros s/n Cautelar ARGENTINA

CP: 1712 Tel.: 0054 11 4621 1819/0840 Fax: 0054 11 4621 6903

CIMMYT

Quím. Ph. D. Roberto Javier Peña (Enlace Institucional)

CIMMYT

Apdo. Postal 6-641

México D.F. MEXICO CP: 06600

Tel.: 0052 5558042004 Fax: 0052 5558041558 E-mail: j.pena@cgiar.org

Dr. José Crossa

CIMMYT

Apdo. Postal 6-641

México D.F. MEXICO CP: 06600

Tel.: 0052 5558042004 Fax: 0052 5558041558 E-mail: j.crossa@cgiar.org

Dr. Mohan Kohli (Enlace Institucional)

Representante Regional

CIMMYT

Andes 1365, Of. 314

Montevideo CC: 1217

Tel./Fax: 00598 2 9028522 E-mail: <u>cimmyt@inia.org.uy</u>

CHILE

Ing. Agr. Ph. D. Claudio Roberto Jobet Fornazzari (Enlace Nacional desde el año 2002)

INIA Carillanca

Km. 10, Camino Cajón, Vilcún

Temuco CC: 58-D

Tel.: 0056 45 215706, Anexo 320

Fax: 0056 45 216112

E-mail: cjobet@carillanca.inia.cl

Ing. Agr. M. Sc. Denise Granger Zerboni

Ex – INIA Platina Chile Fernando de Argüello 6885

Vitacura - Santiago

CHILE

Tel.: 0056 2299869

E-mail: carlosdelacruzh@hotmail.com

Ing. Agr. Ph. D. Ignacio Ramírez (Enlace Nacional hasta el año 2002)

INIA

R. Lenz 550 Santiago CC: 439/3

Tel.: 0056 2747594 Fax: 0056 25417667

E-mail: iramirez@platina.inia.cl

Bioq. Javier Zúñiga Rebolledo

INIA Carillanca

Km. 10, Camino Cajón-Vilcún

Temuco CC: 58-D

Tel.: 0056 45 215706, Anexo 320

Fax: 0056 45 216112

E-mail: jzuniga@carillanca.inia.cl

Ing., MSc., Mireya Zerené

INIA Carillanca

Km. 10, Camino Cajón-Vilcún

Temuco CC: 58-D

Tel.: 0056 45 215706, Anexo 320

Fax: 0056 45 216112

PARAGUAY

Tecn. Alim. M. Sc. Graciela Cabrera Arredondo (Enlace Nacional)

Instituto Agronómico Nacional (IAN)

Km. 48.5, Ruta 2

Caacupé PARAGUAY

Tel.: 00595 511 42255/42119

Fax: 00595 511 42119

E-mail: ianmag@rieder.net.py gc580613@hotmail.com

URUGUAY

Q.F. M. Sc. Daniel Vázquez

Encargado Laboratorio Calidad de Granos

INIA La Estanzuela Ruta 50, Km. 11 Colonia, URUGUAY

CP: 70000 CC: 39173

Tel.: 00598 574 8000 Fax: 00598 574 8012

E-mail: dvazquez@inia.org.uy

Ing. Agr. Gonzalo Gutiérrez Facultad de Agronomía

Garzón 780 Montevideo URUGUAY

Tel.: 00598 2 3585492/3556056

Fax: 00598 2 3593004

E-mail: gongu@chasque.apc.org

Ing. Agr. John Grierson

Unidad de Cooperación Internacional

INIA

Andes 1365, P.12

Montevideo

Tel.: 00598 2 9020550 Fax: 00598 2 9023633 E-mail: jgrier@inia.org.uy

Nut. Inés Delucchi INIA La Estanzuela Ruta 50, Km. 11

Colonia CP: 70000 CC: 39173

Tel.: 00598 574 8000 Fax: 00598 574 8012 E-mail: delucci@inia.org.uy

2- TRABAJOS CIENTÍFICOS