## Scientific and regulatory advances of genome editing in Brazil

Hugo B. C. Molinari, DSc.

## Plant Breeding Innovation

## CTNBio Normative Resolution № 16 of January 15, 2018

1


2
National Gazette Publication
General procedure for a case-by-case consultation at CTNBio for a product generated by TIMP, according to Normative Resolution no 16. If the product is considered a GMO the developer will have to go through all the biosafety requirements and will be considered approved only after the CTNBio's risk assessment. If the product is considered a conventional, it can be registered using the existing procedure.


Petition submission to CTNBio


## Gene Editing RNAis etc

## DIÁRIO OFICIAL DA UNIÃO

Publicado em: 22/01/2018 | Edição: 15 | Seção: 1 | Página: 2-8 Órgäo: Ministério da Ciência, Tecnologia, Inovaçöes e Comunicaçöes $/$ Comissäo Técnica Nacional de Biosseguranca

RESOLUÇÃO NORMATIVA NO 16,.DE 15 DE JANEIRO DE 2018 ANEXO I

Estabelece os requisitos técnicos para apresentação de consulta à CTNBio sobre as Técnicas Inovadoras de Melhoramento de Precisão

A COMISSĀO TÉCNICA NACIONAL DE BIOSSEGURANÇA - CTNBIO, nO usO de SUAS atribuiçöes legais e regulamentares e em observância às disposiçöes contidas nos incisos $\times V$ e $\times V$ do art. 14 da Lei $n^{\circ} 11$. 105 , de 24 de março de 2005;

CONSIDERANDO a necessidade de avaliar as Técnicas Inovadoras de Melhoramento de Precisão (TIMP), do inglés Precision Breeding Innovation (PBl) e que também englobam as denominadas Novas Tecnologias de Melhoramento, do ingles New Breeding Technologies -NBTs, à luz dos preceitos previstos na Lei no 11.105, de 24 de março de 2005;

Considerando que a Lei no 11.105, de 2005, define moléculas de ADN/ARN recombinante, engenharia genética e organismo geneticamente modificado - OGM nos incisos III, IV e V de seu art. $3^{\circ}$. respectivamente;

Considerando que as TIMP abrangem um conjunto de novas metodologias e abordagens que diferem da estratégia de engenharia genética por transgenia, por resultar na ausência de ADN/ARN



Brazilian Biosafety Law and the New Breeding Technologies

| Journal: | Frontiers of Agricultural Science and Engineering |
| ---: | :--- |
| Manuscript ID | FASE-2019073 |
| Manuscript Type: | Review |
| Date Submitted by the |  |
| Author: |  | 24-Aug-2019 $\quad$| Complete List of Authors: | Nepomuceno, Alexandre; National Biosafety Technical Commission <br> Fuganti-Pagliarini, Renata; Embrapa Soybean <br> Felipe, Maria Sueli; Catholic University of Brasilia; National Biosafety <br> Technical Commission <br> Molinari, Hugo Bruno; Embrapa Agroenergy; National Biosafety Technical <br> Commission <br> Vellini, Edivaldo; Paulista State University Julio de Mesquita Filho; <br> National Biosafety Technical Commission <br> Pinto, Eduardo; Embrapa Biotechnology and Genetic Resources; <br> National Biosafety Technical Commission <br> Dagli, Maria Lucia ; São Paulo University; National Biosafety Technical <br> Commission <br> Filho, Galdino ; UEL; National Biosafety Technical Commission <br> Fernandes, Patricia ; Espirito Santo Federal University; National <br> Biosafety Technical Commission |
| ---: | :--- |
| Speciality: | Agrobiotechnology, Crop Science, Crop Genetics and Breeding |
| Keywords: | Genetically Modified Crops, Brazilian Legislation, CTNBio |
|  |  |

## Different strategies for crop improvement



No GM


GM

Genome editing CRISPR/Cas9


No GM

## Regulatory aspects of genetically modified crops

## Transgenic technology

1:10:100

CRISPR system

- Low cost
- Technology non-GM
- Integration with breeding programs
- Assays of protein expression (target and markers)
- Risk to animal/human health
- Compositional equivalence of sugar and ethanol (Physical-chemical analyzes and quality indicators) - e.g. sugarcane
- Industrial processing: comparison between GMO versus native
- Risks to the environment (class I)
- Risks to the environment (class II)
- Other relevant characteristics of the GMO in question

Development Phases of a GM Crop


[^0]It can take ~12-20 years from discovering a gene(s) and placing a GM Commercial Variety in the Market

## Comparative timeline



## Developer profile

## GM crops approvals



## Diversity by type of organism

## Approved GMOs

NBT products (non GMO)


# Argonentine new regulattion on genome edition 

## Genome Editing in other countries

Table 2 Events (nonmicrobial) that have been obtained by directed mutagenesis and which have been approved for commercialization in the respective jurisdiction.

| Country | Organism | Trait | Technique | Developer | References |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Brazil | Cow | Hornless |  |  | CTNBio (2018) |
| Canada | Oilseed rape | Herbicide tolerance | ODM | Cibus | CFIA (2013) |
| Canada | Oilseed rape | Herbicide tolerance | SDN | BASF | CFIA (2014) |
| Chile | Soybean | Low linolenic acid content | TALEN |  | SAG (2017) |
| Chile | Carnelina sativa | High oleic acid content | CRISPR/Cas9 |  | SAG (2018) |
| USA | Oilseed rape | Herbicide tolerance | ODM | Cibus | https://www_cibus.com/press/press031814.php |

Edited Organisms approved for
commercialization

Table 1 Examples of events obtained by directed mutagenesis which are in the pipeline for commercialization, and which regulatory authorities have declared to not be regulated as a genetically modified organism (GMO).

| Country | Organism | Trait | Technique | Developer | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| USA | Soybean | Drought and salt tolerance | CRISPR/Cas | USDA ARS, Plant Science Research Unit | Waltz (2018) |
| USA | Camelina sativa | Increased oil content | CRISPR/Cas | Yield10 Bioscience | Waltz (2018) |
| USA | Green bristlegrass | Delayed flowering time | CRISPR/Cas | Donald Danforth Plant Science Center | Waltz (2018) |
| USA | Maize | High amylopectin starch | CRISPR/Cas | DuPont Pioneer | Waltz (2018) |
| USA | White button mushroom | Anti-browing properties | CRISPR/Cas | Pennsylvania State University | Waltz (2018) |
| USA | Soybean | High oleic acid, low trans-fatty acids | TALEN | Calyxt | Pennisi (2016) |
| USA | Potato | Improved storage, low acrylamide | TALEN | Calyxt | Pennisi (2016) |
| USA | Soybean | High oleic acid | TALEN | Calyxt | http://www.calyxt.com/products/ products-in-our-development-pipeline/ |
| USA | Soybean | High oleic, low linolenic | TALEN | Calyxt | http://www.calyxt.com/products/ products-in-our-development-pipeline/ |
| USA | Wheat | High fiber | TALEN | Calyxt | http://www.calyxt.com/products/ products-in-our-development-pipeline/ |
| USA | Wheat | Powdery mildew resistance | Null segregant | Calyxt | http://www.calyxt.com/products/products-in our-development-pipeline/ |
| USA | Potato | Cold storable |  | Calyxt | http://www.calyxt.com/products/ products-in-our-development-pipeline/ |
| USA | Alfalfa | Improved quality |  | Calyxt | http://www.calyxt.com/products/ products-in-our-development-pipeline/ |

## Genome Editing at Embrapa

| $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Institución/ } \\ \text { Pais } \end{array} \\ \hline \end{array}$ | Tipo de NBT | Cultivo | Descripción de la técnica | Rasgo | Nivel de desarrollo |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Embrapa/ <br> Brasil | Edición mediante CRISPR en plantas modelo | Almorejo (Setaria viridis), Arabidopsis thaliana, tabaco | Expresión estable | Potencial para rasgo de interés | Prueba de concepto en planta modelo |
|  | Edición mediante CRISPR en plantas cultivadas | Frutas (manzana, vid) | $\begin{aligned} & \text { Expresión } \\ & \text { transitoria } \\ & \text { estable } \end{aligned}$ | PPOs | Inicial, identificando target genes |
|  |  | Pasturas |  | Resistencia a herbicidas, genes para tolerancia a la sequia |  |
|  |  | Caña de azúcar (Saccharum spp.) |  | Resistencia a herbicidas, modificación de la pared celular, genes para tolerancia a la sequia |  |
|  |  | Arroz |  | Brusone, genes para tolerancia a la sequia, aumento productividad, etc. |  |
|  |  | Maí, Sorgo bicolor |  | Resistencia a herbicidas, genes para tolerancia a la sequía, modificación de la pared celular | Plantas siendo transformadas |
|  |  | Trigo |  | Resistencia a roya, fusariosis | Inicial, identificando target genes |
|  |  | Commom <br> (frijoles) |  | Genes para tolerancia a la sequia, calidad del grano, aumento productividad, etc. |  |
|  |  | Glycine max (soja) |  | Resistencia a herbicidas, calidad del aceite, sustancias antinutricionales, genes para tolerancia a la sequia, resistencia a roya, resistencia a nematodos, aumento productividad, etc. | Plantas siendo transformadas |
|  | Edición mediante TALENs y CRISPR en Animales | Bovinos de leche (Holandés) y de carne (Nelore) | $\begin{aligned} & \text { Expresión } \\ & \text { transitoria } \\ & \text { estable } \end{aligned}$ | $\begin{aligned} & \text { Polled (hornless), MyO (myostatin), beta-lactoglobulina } \\ & \text { en ganado de leche (alergenicidad), genes para } \\ & \text { tolerancia al calor, garrapatas, edición de Brucella para } \\ & \text { producción de vacunas, Edición Epigenómica } \end{aligned}$ | Prueba de concepto |
|  |  | Aves |  | Aumento de producción de lisozima en aves de postura por edición genética |  |
|  |  | Mosca de las frutas |  | Genes siendo prospectados | Inicial, identificando target genes |
|  |  | Penicillium |  | Celuasas | Inicial, identificando target genes |



Gene Disruption
SDN-1


STO SDN-3



Gene Insersion


SDN-2

Gene Correction

# Edited sugarcane varieties with resistance to imidazolinones, sulfonylureas and triazolopyrimidines 



A


B


## Targeted Precision Nucleotide Substitutions in Sugarcane Following CRISPR/Cas9 and Template Mediated Genome Editing Confer "Gain of Function"

Tufan Mehmet Oz, Ratna Karan, Aldo Merotto, Fredy Altpeter
University of Florida - IFAS, Gainesville, FL


F


Figure 2. A) General outline of sugarcane tissue culture, plant regeneration and genetic transformation. B) Calli placed at the center of a petri dish for bombardment. C) Calli under selection. D) Regeneration under Geneticin. E) Regeneration under bispyribac sodium. F) Wild type (WT) and genome edited line L2 sprayed with imazapyr (Arsenal ${ }^{\oplus}$ ) at 3 liter per ha (twice the labeled rate).

## Edited sugarcane varieties with low PPO activity



## Increased glucose convertion (BAHD1 gene)

- More than $70 \%$ of the biomass cellulose was converted to glucose;
- No change in percentage of cellulose, hemicellulose and lignin;
- ART content of the biomasses Flex was equal to or greater than WT

Increased glucose in 48 hours of enzymatic hydrolysis


## Improving plant cell wall deconstruction



PRETREATMENT OF BAGASSE
Bagasse Bagasse


Bagasse consists of cellulose, lignin and hemicellulose which contain more sugars for ethanol production


FERMENTATION OF BROTH
Enzymes acting on the bagasse produce a liquid that is sent through the fermentation process


Enzymes convert sugars from cellulose and hemicellulose, and fermentation occurs in different tanks
 - TYPE 2 ENZYMES

## BAHD5 - New gene for sucrose improvement in grasses

- Metabolic profile (HPLC-HRMS): greatest difference observed for the BAHD5 events;
- Desreplication: suc"~ñ min Jin~uiminnat metabolite in the BAH
- We observed an incre leaf (Ev. $1.1=52.94 \%$ (Ev. $1.1=95.80 \%$; ! 94.05\%) in compariso
- No significant diffenc carbohydrate content.





## Putatively edited sugarcane plants (no selection)



Gene $A=92$ shots $x \sim 120$ plantlets $=11.040$ regenerated plantlets Gene $B=86$ shots $x \sim 120$ pantlets $=10.320$ regenerated plantlets

I
Bulk of 50 plantlets

Bulk PCR products will be sequenced using a NGS approach followed
by software analysis

The expected mutation efficiency ranged from $\underline{0,001 \%}$ to $0,01 \%$


Table 1. Examples of selection-free genome editing in different plant species.

| Delivery Method | Cargo | Plant Species | Tissue | Selection | Mutation Efficiency | Calculation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Agrobacterium-mediated transformation | DNA (transient) CRISPR/Cas9 | Tobacco <br> Nicotiana tabacum | Leaf disks | No | 2.57\% | Mutated plants/total regenerated shoots |
|  |  |  |  | No | 17.2\% | Non-transgenic plants/total mutant plants |
| Particle bombardment | DNA CRISPR/Cas9 | Wheat <br> Triticum aestivum | Immature embryos | No | $3.3 \%, 2 / 26$ plants homozygous and transgene-free | Mutated plants/bombarded embryos |
|  | IVT mRNA CRISPR/Cas9 |  |  | No | 1.1\%, 6/17 plants homozygous and transgene-free | Mutated plants/bombarded embryos |
| Particle bombardment | RNP CRISPR/Cas9 | Maize <br> Zea mays | Immature embryos | No | 2.4-9.7\%, 9.6-12.9\% of mutated plants biallelic | Mutated plants/analyzed plants |
| Particle bombardment | RNP CRISPR/Cas9 | Wheat <br> Triticum aestivum | Immature embryos | No | 4.4\% | Mutated plants/bombarded embryos |
| Protoplast transfection (PEG) | DNA TALEN | Potato <br> Solanum tuberosum | Protoplasts | No | 11-13\% | Mutated callus/total protoplast-derived callus |
| Protoplast transfection (PEG) | DNA TALEN | Tobacco <br> Nicotiana benthamiana | Protoplasts | n.a. | 70.5\% | Deep sequencing of protoplasts |
|  | mRNA TALEN |  |  | n.a. | 5.8-16.9\% | Without/with UTR |
| Protoplast transfection (PEG) | RNP CRISPR/Cas9 | Lettuce <br> Lactuca sativa | Protoplasts | No | 46\%, 6\% mono-, $40 \%$ biallelic | Mutated callus/analyzed callus |
| Protoplast transfection (PEG) | RNP CRISPR/Cas9 | Grapevine <br> Vitis vinifera cv. Chardonnay | Protoplasts | n.a. | 0.1\% | Deep sequencing of protoplasts |
|  |  | Apple <br> Malus domestica cv. <br> Golden delicious | Protoplasts | n.a. | 0.5-6.7\% | Deep sequencing of protoplasts |
| Protoplast transfection (PEG) | RNP CRISPR/Cas9 | Petunia <br> Petunia x hybrida | Protoplasts | n.a. | 5.3-17.8\% | Deep sequencing of protoplasts |

## Soybean with Herbicide Resistance

CRISPRs Homologous Recombination


PROJETO CRISPRevolution

Plantas de importância econômica com genoma editado pela tecnologia CRISPR visando melhoria da qualidade nutricional e industrial e tolerância a estresse hídrico


Cultivares / Variedades superiores para aumento da competitividade do agronegócio


## EMBRAPA Soybean Center - CRISPRs Systems

Soybean: Protein Quality and Drought Tolerance


REHYDRATION AFTER 2 WEEKS OF DROUGHT STRESS


HR at promoter elements


Candidate genes for Knock Out and HR: Stay green1 (D1); Stay green2 (D2);
Pheophorbidase (PH2) , DREB, AREB, DRIP, etc
Dr. Alexandre Nepomuceno


Dr. Liliane Henning

Checking Expression levels of DREB Interacting Proteins (DRIPs) aiming to choose the best(s) targets for CRISPR-Cas9 - SDN1 system.

Objective: Increase DREB expression under drought conditions since DRIP is a negative regulator of DREB.


Arabidopsis DREB2A-Interacting Proteins Function as RING E3 Ligases and Negatively Regulate Plant Drought Stress-Responsive Gene
Expression. Feng Qin, Yoh Sakuma, Lam-Son Phan Tran, Kyonoshin Maruyama, Satoshi Kidokoro, Yasunari Fujita, Miki Fujita, Taishi Umezawa, Yoriko Sawano, Ken-ichi Miyazono, Masaru Tanokura, Kazuo Shinozaki, Kazuko Yamaguchi-Shinozaki. The Plant Cell Jun 2008, 20 (6) 1693-1707 DOI: 10.1105/tpc.107.057380

Use of at(n) insertions (CRISPRs - SDN2 system) in the promoter elements for controlling the expression levels of coding sequences.

Objective: increase the expression of native genes involved in defenses against cell dehydration, without the use of DNA elements considered transgenic such as 35 S promoter


# EMBRAPA Genetic Resources Center CRISPRs Systems 

## Knockout of Key genes Oil Pathways

## Improvement on Soybean Biofuel



# EMBRAPA Genetic Resources Center 

PROMOTER MODULATION OF DROUGHT-TOLERANCE RELATED GENE WITH dCas9 CONFERS DROUGHT TOLERANCE IN Arabidopsis thaliana


## SCIENTIFIC REPRTS

OPEN Improved drought stress tolerance in Arabidopsis by CRISPR/ dCas9 fusion with a Histone

## EMBRAPA Rice and Bean Center



## CRISPR in Common Beans



## Embrapa Maize and Sorghum center

- Drought tolerance
- Herbicide tolerance
- Aluminum resistance
- Disease resistance


## Embrapa Grapes and Wine center

- Disease resistance
- Flavor alteration



## Embrapa Coastal Tablelands center

- Disease resistance (coconut lethal yellowing disease)


## Cow's milk allergy

Beta-lactoglobulin (LGB) is the main whey protein of cow's milk

- 13-76\% patients can react to this protein
- Mainly infants
- Milk processing does not eliminate the allergy completely
- Processed milk has high costs

Project aim: knock-out the the BGL variant $A$ and $B$ using TALENs /CRISPR

- Targeting the promoter region and exon 1 or 2
- Generate cows producing LGB-free milk



Review Article

World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow's Milk Allergy (DRACMA) Guidelines

Alessandro Fiocchi, (Chair), Jan Brozek, Holger Schünemann, (Chair), Sami L. Bahna,


Dr. Luiz Sérgio Camargo

## Heat stress in dairy cows

- High producing dairy cows: low conception and milk production under high temperatures (summer) caused by the heat stress
- The predicted increase of global average temperature is likely to aggravate the effects of heat on animal production
- Some individuals and some breeds are more tolerant to high temperature than others
- Project aim:
- Short and medium term: identification of polymorphism/mutations
 associate to thermotolerance for genome selection
- Long-term: edition of the genome using CRISPRs, accordingly to gene function and the SNPs found previously in the project
- Generate high producing dairy cows more tolerant to high temperatures


## 

Organisms with edited genome evaluated by CTNBio according to RN16 that were considered Not GM

## June 2018

First microorganism

## Yeast for ethanol production

## Edited in Brazil

## Estimated cost savings: R\$ 1.5 million

Saccharomyces cerevisiae
Development Procedures
Yeast Germplasm Bank: 80 Strains tested for high alcohol and low glycerol production

Three S. cerevisiae strains chosen and crossed by classical breeding


A Forth strain with very high alcohol production was identified. Mutation in 4 genes are responsible for this high efficiency.

## First Edited Plant considered non-GM in Brazil

industries.

Waxy corn characteristics
A long history of safe use as a specialty crop
WAXY MAIZE FROM UPPER BURMA
A varigry of maize introduced from Shang. hai, China, in 1908, was found to have sheeds


 been called waxy. Although distinnt from
other types, waxy endopperm is by no means other types, waxy endosperm is by no meens

- Known since 1908
- Commercially cultivated since 1940's
- Sold by Pioneer since 1980's


Uses of Waxy corn:
Essential functions in food industry to improve uniformity, stability, and texture in various food products;
Binding qualities for the papermaking process;

- Additional applications in the, corrugating, textile and adhesive

No. 2 Yellow Dent


## Brazil: December 2018

## Considered non-GM in USA, Canada and Argentina.

## Summary

Gene editing directly in elite maize produces improved products faster and with no linkage drag compared to conventional production


## August 2019

## PRECISION GENETICS FOR IMPROVING PRODUCTION TRAITS OF TILAPIA

Gene edited tilapia secure GMO exemption

- regulations - politics - genetics a breeding - biotechnology

F by The Fish Site
18 December 2018, at 2:06p.m.

A line of tilapia that has been gene edited will not be classified as a genetically modified organisms (GMOs) in Argentina, according to a government advisory commission.

[^1]

Image Credit: Medium
This precision breeding approach has successfully increased the fillet yield by $25 \%$ without negatively impacting growth rate, feed efficiency, or nutritional quality of the fillets. An increased fillet yield will provide producers an opportunity to either (i) shorten the production cycle while maintaining the same amount of saleable meat, or (ii) maintain the production cycle with more fillet to sell to the market. This technology can be used to improve other production traits and can be used in other species of finfish.

## Meat quality

## Myostatin (MSTN) - restrain muscle growth

- Some breeds have natural mutations (ex. Belgian blue) that causes muscle hypertrophy called double-muscle
- Superior carcasses (less bone and low fat)
- Myostatin can be edited in zebu breeds to improve carcass quality

( $\uparrow$ increased or improved effect, $\downarrow$ decreased or deteriorated effect; $\approx$ no clear effect )


## Meat quality

## Genome edited sheep and cattle

Chris Proudfoot • Daniel F. Carlson - Rachel Huddart - Charles R. Long Jane H. Pryor - Tim J. King • Simon G. Lillico - Alan J. Mileham
David G. McLaren • C. Bruce A. Whitelaw • Scot C. Fahrenkr David G. McLaren - C. Bruce A. Whitelaw - Scott C. Fahrenkrug

- Myostatin mutation
- TALENS
- Cattle (Nelore) and ovine - Proudfoot et al., 2015
- CRISPR/Cas9



## Thank you for your attention!

"In the moment the best thing you can do is the right thing, the next best thing is the wrong thing, the worst thing you can do is nothing" Theodore Roosevelt

Take Action


[^0]:    Estimated Costs: U\$136 million

[^1]:    The line, known as FLT 01, has been developed by Intrexon and its subsidiary AquaBounty Technologies., the biotechnology company best known for its AquaAdvantage salmon strain. The tilapia were developed using gene editing

